Ракетный двигатель

Содержание:

Устройство реактивного двигателя

С первого взгляда кажется устройство конструкции реактивной установки достаточно простым, однако характеристики использования топлива и его сгорания требуют применения высокопрочных материалов.

На рисунке 4 изображено устройство реактивного двигателя.

Из рисунка 4 видно, что на входе в аппарат установлен вентилятор всасывающий воздух в двигатель. Вентилятор состоит из мощных и объемных по размеру лопастей, которые, как правило, изготавливаются из титана. Далее вслед за вентилятором установлен многоступенчатый турбокомпрессор для подачи воздуха непосредственно в камеру, где происходит сгорание рабочего тела.

После воспламенения и сгорания поток реактивных газов направляется на рабочие лопатки турбоагрегата, чем и приводят его во вращение. На валу турбины горячей ступени имеется жесткая связь с компрессором, который вращается от работы турбины.

Отработанный газовый вихрь через сопла набирает реактивную скорость и покидает полость аппарата. Для предотвращения перегрева и расплавки на сопла подводится охлаждающий воздух от турбокомпрессора по специальным каналам в корпусе двигателя.

Рекомендации

Государственное устройство Бразилии

Согласно Конституции 1988 года, Бразилия – это федеративная республика. Ее глава — Президент, которого избирают на 4 года. Исполнительная власть принадлежит Президенту, Вице-президенту и Кабинету министров в составе 15 министров с председателем.

Двухпалатный бразильский парламент называется Национальный Конгресс, он состоит из Сената (81 сенаторов) и Палаты депутатов (513 депутатов).

Основные политические партии – «Партия трудящихся», «Партия бразильского демократического движения», «Бразильская социал-демократическая партия», «Демократическая партия», «Прогрессистская партия» и «Партия республики».

Административно страна делится на 26 штатов и один федеральный округ с центром в Бразилиа.

Плазменные ракетные двигатели

Плазменный двигатель — Электрический ракетный двигатель, рабочее тело которого приобретает ускорение, находясь в состоянии плазмы. Плазменные двигатели различной конструкции строились и тестировались начиная с 60-х годов, однако на начало 21 века существует лишь один проект плазменного двигателя — VASIMR, который реализуется на коммерческой основе. VASIMR пока что прошел лишь стендовые испытания, летные запланированы на 2016 год. Другие типы плазменных двигателей, в частности СПД и ДАС (двигатели с анодным слоем), очень к ним близкие, имеют совершенно другие принципы работы. Потенциал плазменных двигателей высок, однако, в ближайшем будущем единственным его применением будет корректировка орбиты МКС и других околоземных спутников.

Реактивные двигатели в космосе

Как вы уже поняли, наиболее мощным двигателем, способным поднять ракету на высоту во много тысяч километров, являлся именно реактивный двигатель.

Конечно, возникает вопрос: как может работать реактивный двигатель в космосе, в безвоздушном пространстве?

В устройстве ракеты предусмотрен резервуар с кислородом, который смешивается с ракетным топливом и образует необходимую тягу полета ракеты, когда космический корабль покидает атмосферу Земли.

Затем приходит в действие закон сохранения импульса: масса ракеты постепенно уменьшается, сгоревшая смесь топлива и кислорода выбрасывается через сопло в одну сторону, а тело ракеты движется в противоположную.

Отклоняемый вектор тяги

Реактивные двигатели обладают соплами самых разнообразных конфигураций. Самыми передовыми считаются подвижные сопла, размещенные на двигателях, у которых имеется отклоняемый вектор тяги. Они могут сдавливаться и расширяться, а также отклоняться на существенные углы — так регулируются и направляются непосредственно реактивные потоки. Благодаря этому воздушные судна с двигателями, имеющими отклоняемый вектор тяги, становятся чрезвычайно маневренными, потому что процессы маневрирования происходят не только вследствие действий механизмов крыльев, но также прямо самими двигателями.

Принцип работы реактивного двигателя

В реактивных двигателях струи воздушных потоков, которые попадают в двигатели, встречаются с обращающимися с колоссальной скоростью турбинами компрессоров, которые засасывают воздух из окружающей среды (при помощи встроенных вентиляторов). Следовательно, происходит решение двух задач:

  • Первичное забирание воздуха;
  • Охлаждение в целом всего двигателя.

Это могут быть, в частности, смеси воздуха и керосина, как в турбореактивных двигателях современных реактивных самолетах, либо смеси жидкого кислорода и спирта, такими обладают кое-какие жидкостные ракетные двигатели, либо еще какое-то твердое топливо в пороховых ракетах. Как только образовалась топливно-воздушная смесь, происходит ее воспламенение с выделением энергии в виде тепла. Таким образом, топливом в реактивных двигателях могут быть только такие вещества, которые в результате химических реакций в двигателях (при возгорании) выделяют тепло, при этом образуя множество газов.

При возгорании совершается существенное разогревание смеси и деталей вокруг с объемным расширением. Собственно говоря, реактивные двигатели пользуются для продвижения управляемыми взрывами. Камеры сгорания в реактивных двигателях — это одни из самых горячих элементов (температурный режим в них может достигать до 2700 °С), и они требуют постоянного интенсивного охлаждения.

Турбореактивные двигатели функционируют несколько иначе. Так, газы, после камер сгорания, вначале проходят турбинами, которым отдают свою тепловую энергию. Это делается для того, чтобы привести в движение компрессоры, которые послужат для сжатия воздуха перед камерой сгорания. В любом случае, сопла остаются последними частями двигателей, через которые протекут газы. Собственно они и формируют непосредственно реактивную струю.

В сопла направляют холодный воздух, который нагнетается при помощи компрессоров, чтобы охлаждать внутренние детали двигателей. Реактивные сопла могут обладать различными конфигурациями и конструкциями исходя из разновидностей двигателей. Так, когда скорость проистекания должна быть выше скорости звука, тогда соплам придаются формы расширяющихся труб или же вначале суживающиеся, а далее расширяющиеся (так называемые сопла Лаваля). Только с трубами такой конфигурации газы разгоняются до сверхзвуковых скоростей, при помощи чего реактивные самолеты перешагивают «звуковые барьеры».

Исходя из того, задействуется ли в процессе работы реактивных двигателей окружающая среда, они подразделяются на основные классы воздушно-реактивных двигателей (ВРД) и ракетных двигателей (РД). Все ВРД являются тепловыми двигателями, рабочие тела которых образуются тогда, когда происходит реакция окисления горючих веществ с кислородом воздушных масс. Поступающие из атмосферы воздушные потоки составляют основу рабочих тел ВРД. Таким образом, аппараты с ВРД несут на борту источники энергии (топливо), но большая часть рабочих тел черпается из окружающей среды.

К аппаратам ВРД относятся:

  • Турбореактивные двигатели (ТРД);
  • Прямоточные воздушно-реактивные двигатели (ПВРД);
  • Пульсирующие воздушно-реактивные двигатели (ПуВРД);
  • Гиперзвуковые прямоточные воздушно-реактивные двигатели (ГПВРД).

Двухконтурный РД

Эти агрегаты имеют массу преимуществ перед турбореактивными. Например, значительно меньший расход топлива при той же мощности.

Но сам двигатель имеет более сложную конструкцию и больший вес.

Да и принцип работы двухконтурного реактивного двигателя немного другой. Воздух, захватываемый турбиной, частично сжимается и подается в первый контур на компрессор и на второй – к неподвижным лопастям. Турбина при этом работает в качестве компрессора низкого давления. В первом контуре двигателя воздух сжимается и подогревается, а затем посредством компрессора высокого давления подается в камеру сгорания. Здесь происходит смесь с топливом и воспламенение. Образуются газы, которые подаются на турбину высокого давления, за счет чего и вращаются лопасти турбины, подающие, в свою очередь, вращательное движение на компрессор высокого давления. Затем газы проходят через турбину низкого давления. Последняя приводит в действие вентилятор и, наконец, газы попадают наружу, создавая тягу.

Принцип работы турбовентиляторного двигателя

Турбовентиляторный двигатель технологически очень сложное изделие, но работающее по довольно простому и понятному принципу. Расскажем, о его устройстве и какие процессы и как в нём протекают. Сначала разберёмся с терминами. Слово турбовентиляторный произошло от английского turbofan, причём англоязычный мир имеет под словом turbofan абсолютно любой двухконтурный турбореактивный двигатель.

При этом они разделяют их с низкой и высокой степенью двухконтурности соответственно, а степень двухконтурности – это параметр, который показывает отношение расхода массы воздуха через внешний контур к расходу во внутреннем. Итак, неотъемлемое свойство турбовентиляторного двигателя высокая степень двухконтурности – для современных изделий от 4 и выше.

Чтобы как можно больше воздуха расходовать через внешний контур используется вентилятор большого диаметра, энергия для его вращения появляется за счёт работы внутреннего контура и в этом заключается суть работы турбовентиляторного двигателя, где с помощью вентилятора создаётся около 80% всей тяги.

Рассмотрим типичное устройство и как это работает. Турбовентиляторный двигатель имеет внешний и внутренний контуры. На входе в двигатель имеется вентилятор большого диаметра, который подаёт воздух в оба контура, устройство внутреннего контура подобно обычному турбореактивному двигателю, который состоит из компрессора, турбины, камеры сгорания и реактивного сопла.

Сначала воздух, немного увеличив давление, после вентилятора попадает в компрессор низкого давления, затем он попадает в компрессор высокого давления, который вращается в несколько раз быстрее. После прохождения обоих компрессоров, воздух, сжатый более чем в 30 раз и сильно нагретый от высокого давления попадает в камеру сгорания. Здесь он смешивается с топливом, которое подаётся с помощью форсунок и поджигается. Далее раскалённый газ с температурой около 1600 градусов и выше начинает совершать полезную работу.

Сначала он попадает в турбину высокого давления, которая заставляет вращаться, находящийся с ней на одном валу компрессор высокого давления. Затем, потратив часть энергии и снизив свою температуру, раскаленный газ попадает в турбину низкого давления, которая находится на одном валу с компрессором и вентилятором. Потеряв большую часть энергии, раскалённый газ попадает в сопло и совершает последнее полезное действие – создаёт реактивную тягу. Таков принцип работы внутреннего контура, который создаёт лишь 20% всей тяги вентиляторного двигателя.

Принцип работы внешнего контура. Турбина низкого давления, находящаяся на одном валу с вентилятором, заставляет его вращаться, воздух, пройдя через лопатки вентилятора и немного увеличив своё давление, проходит через спрямляющий аппарат, его неподвижные лопатки поворачивают поток воздуха в осевом направлении, заодно повышая его давление. Затем воздушный поток попадает в сопло, где создаётся реактивная тяга.

Вот и весь принцип работы вентиляторного двигателя. Разумеется, каждый конкретный двигатель имеет свои особенности и различия, больше всего они касаются устройства внутреннего контура, но схема исполнения всегда остаётся плюс минус одинаковой. Обычно разница заключается в количестве ступеней компрессора и турбины, также помимо двухвальной схемы используется и трёхвальная, когда вентилятор и компрессор низкого давления больше не связаны, в таком случае используется промежуточная турбина, которая вращает только компрессор низкого давления на отдельном валу.

Ещё один способ увеличения эффективности конструкции – это установка редуктора на валу, который соединяет турбину низкого давления и вентилятор, такое решение позволяет им работать на оптимальных для себя режимах. Устройство внешнего контура также может иметь заметные отличия. При относительно небольшой степени двухконтурности в двигателе может использоваться смешение потоков, где газ из обоих контуров попадает в единую камеру сгорания и покидает через общее сопло.

Но, такая схема не подходит для более габаритных двигателей с высокой степенью двухконтурности, так как масса двигателя значительно вырастет, поэтому практически во всех вентиляторных двигателях потоки не смешиваются и длина внешнего контура всегда меньше внутреннего. Вот собственно и всё – таков принцип и способы повышения эффективности работы турбовентиляторного двигателя.

Источник

Импульсный ракетный двигатель

Автор публикации: Редколлегия · 12 января 2016 ·  

ИМПУЛЬСНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ — работает в режиме кратковременных периодических включений (импульсов), суммарное число которых составляет обычно многие тысячи. Характерным является режим импульсной модуляции с импульсами тяги постоянной амплитуды и переменной длительности (ширины) и частоты (от нескольких десятков импульсов в секунду до 1 в несколько суток). По значению суммарного импульса тяги, развиваемого за определённое время, импульсный ракетный двигатель равноценен РД, работающему непрерывно при меньшей тяге. Однако достоинством импульсного ракетного двигателя является возможность путём изменения режима работы двигателя быстро и с большой точностью получать различные значения суммарного импульса тяги, что неосуществимо при использовании РД, работающего непрерывно. К импульсному ракетному двигателю предъявляются требования быстродействия, стабильности характеристик, выдачи минимального значения единичного импульса тяги, малого потребления электроэнергии управляющими клапанами. Идеальный импульсный ракетный двигатель должен выдавать импульсы тяги прямоугольной формы, совпадающие по времени с электрическими командами. В реальном импульсном ракетном двигателе импульсы тяги имеют трапецеидальную или колоколообразную форму; они шире командных импульсов и запаздывают относительно их. Неэкономное расходование ракетного топлива в процессе многократных режимов запуска и останова снижает результирующий удельный импульс РД. Импульсные ракетные двигатели развивают малую тягу, большинство их относится к ракетным микродвигателям. Импульсные ракетные двигатели применяются в индивидуальных ракетных двигательных установках и являются основным типом РД реактивных систем управления КА. Быстродействие импульсных ракетных двигателей обеспечивает управление полётом при малом расходе рабочего тела. При совершении манёвров, связанных с относительно большими затратами энергии, импульсные ракетные двигатели работают непрерывно (при изменении местоположения синхронных ИСЗ — до нескольких часов).

Импульсные ракетные двигатели работают как на двухкомпонентном самовоспламеняющемся топливе, так и на однокомпонентном топливе. Примером импульсного ракетного двигателя на двухкомпонентном топливе может служить Р-4Д, созданный для реактивных систем управления космического корабля «Аполлон». В качестве однокомпонентного топлива широко используется гидразин. В частности, типичная реактивная система управления связного ИСЗ, стабилизируемого вращением (обычно с частотой ~ 1 с-1), содержит несколько пар гидразиновых импульсных ракетных двигателей тягой ~ 20 Н каждый. Недостатками гидразиновых импульсных ракетных двигателей являются разрушение и потеря качества катализатора при большом числе «холодных» включений. Увеличение ресурса импульсных ракетных двигателей достигается поддержанием катализатора при повышенной температуре (например, 600 К) путём электрообогрева ДУ. Созданы гидразиновые импульсные ракетные двигатели с числом включений свыше 1 миллиона.

Помещено в рубрику Изучаем ракетные двигатели > База знаний > Энциклопедия

Системы видеонаблюдения

Турбореактивный двигатель самолета: устройство и принцип работы

Совершая полет в самолете в большинстве случаев люди никогда не задумываются о том, как работает его двигатель. Но на самом деле о работе двигателя и реактивной тяги с помощью, которой работает сам двигатель, знали ее в Античное время. Но применить эти знания на практике смогли не так давно, так как раньше не технологии не позволяли никому достичь его исправной работы. Гонка вооружения между Англией и Германией стала толчком к созданию ТРД (турбореактивного двигателя).

В работе ТРД самолета нет никаких сложностей, принцип его работы может понять почти каждый человек. Но данный двигатель имеет несколько нюансов, их соблюдение контролируется под строгим присмотром руководства. Для того чтобы авиалайнер смог держаться в небе, необходима идеальная работа двигателя. Так как от работы двигателя напрямую зависят жизни пассажиров находящихся на борту авиатранспорта.

Двухконтурный РД

Эти агрегаты имеют массу преимуществ перед турбореактивными (меньший расход топлива при той же мощности).

Воздух, захватываемый турбиной, частично сжимается и подается в первый контур на компрессор и на второй – к неподвижным лопастям. Турбина при этом работает в качестве компрессора низкого давления.

В первом контуре двигателя воздух сжимается и подогревается, а затем подается в камеру сгорания. Здесь происходит смесь с топливом и воспламенение. Образуются газы, которые подаются на турбину высокого давления, за счет чего и вращаются лопасти турбины.

Затем газы проходят через турбину низкого давления. Она приводит в действие вентилятор, и газы попадают наружу, создавая тягу.

Принцип работы реактивного двигателя

В общем виде принцип работы реактивного двигателя практически аналогичен принципу работы ядерного двигателя. Для первого применяется химическая движущая энергия, для вотрого же — энергия ядерных элементов.

Многие из нас, особенно мужская половина населения (на службе в армии, на охоте, в тире, на полигоне), стреляли из огнестрельного оружия и, соответственно, чувствовали на себе действие реактивной силы в виде отдачи. Этот же принцип, основанный на законе сохранения импульса, применяется в реактивных двигательных установках, в которых главным двигательным веществом является топливо.

Если рассмотреть вариант реактивного двигателя, функционирующего на керосиновом топливе, то в смесительном отсеке агрегата, где топливо смешивается с окислителем и происходит горение состав, выпускается огромнейшая энергия в виде тепла и мгновенного повышения давления в 10-20-30 и более раз выше атмосферного.

При постоянном поступлении топлива и окислителя (воздуха, жидкого кислорода, азотной кислоты) выходная кинетическая энергия рабочей отработанной смеси будет обладать высоким движущим импульсом. И истекающие струи через «Лавальское» сопло агрегата в окружающее пространство будут приводить в движение установку за счет выталкивающего момента.

Популярное в нашем блоге

Из истории ракетной техники

Вы знаете когда была запущена первая ракета с жидкостным ракетным двигателем, или кто предложил использовать тетраоксид азота в качестве окислителя? Кто такой Вернер фон Браун и Сергей Королёв? За не особо долгую историю развития ракетной техники произошло столько знаковых и особенных событий, что об этом уже написаны тысячи книг. Если любопытно, обязательно загляните в наш исторический дайджест. Ведущий рубрики Александр Грищенко расскажет Вам очень много интересного.
 

Расчёт камеры ЖРД

Если Вы делаете курсовой или дипломный проект, или быть может Вы только начинаете осваивать нелёгкое искусство ракетного инженера-двигателиста, Вам непременно нужно посетить данный раздел. Я, Дмитрий Завистовский, помогу Вам освоить все основные этапы этого пути. Мы разберём особенности всех необходимых расчётов — определим состав топлива, выполним термодинамический расчёт, построим газодинамический профиль камеры, посчитаем форсунки и проточное охлаждение камеры и не забудем о прочностных расчётах. Изучайте ЖРД вместе с нами.
 

Энциклопедия

Вы пришли после лекции, и у Вас остались какие-то вопросы? А может Вы нашли интересную книгу и встретили незнакомый термин. Откройте нашу Энциклопедию. Здесь есть всё, что Вы хотели знать о ракетных двигателях, но боялись спросить. Расширьте свой кругозор — удивите преподавателя!
 
 

Справочные материалы

Вам знакомо ощущение досады, когда завтра консультация, хочется успеть закончить какой-то расчёт, а Вы не знаете где взять, например, значение теплопроводности бронзы? Что делать? Теперь нет ничего проще. В наших Справочных материалах Вы сможете найти всё, что нужно любознательному студенту. А если у Вас есть чем поделиться, мы с радостью разместим полезную информацию на нашем сайте, чтобы она стала доступной всем читателям.
 
 

Сфера применения

Использование ПВРД на пилотируемых самолетах нецелесообразно, ведь для их запуска нужны дополнительные двигатели. Намного проще сразу установить, например, ТРД. Именно поэтому их применение сводится к установке на крылатые ракеты, летающие мишени и непилотируемые самолеты, летающие со скоростью в пределах от 2 до 5М. В основном это «одноразовые» двигатели, что вполне логично, учитывая их невысокую стоимость и простую конструкцию. Запуск аппаратов с ПВРД осуществляется за счет их разгона до рабочей скорости с помощью самолетов-носителей или ракетных ускорителей.

Гиперзвуковые ПВРД планируется использовать на космических аппаратах, но пока это только теория.

Несмотря на то, что использование ПВРД в настоящее время ограничено, постоянно ведутся работы по улучшению их рабочих характеристик и созданию новых моделей.

Последняя разработка является двигатель Sabre частной фирмы Reaction Engines.

Суть данного двигателя в том, что традиционные двигатели, которые сегодня применяются в авиации, для полета на гипер скоростях требуют спецрезервуаров с жидким кислородом, если самолет развивает в полете скорость более 3000 км/ч. Обыкновенный воздух на таких скоростях нагревается до очень высоких температур, порядка 1000 градусов по Цельсию, что резко понижает термическое КПД. Особенность двигателя Sabre в том, что позволяет применять атмосферный воздух вместо жидкого кислорода. Когда воздух проходит сквозь двигатель, он сжимается и разогревается, в это время он попадает в холодильник, который оснащен целой системой трубок, которые наполняются гелием эти трубки, гелий охлаждает воздух до необходимой температуры. У двигателя Sabre есть одна особенность. Он в состоянии работать в 2-х режимах: как реактивный двигатель и как ракетный двигатель. Устанавливаться он будет на самолете Skylon. Данная аппарат сможет разогнаться в атмосфере в 5 раз быстрее скорости звука и в 25 раз в открытом космическом пространстве.

Skylon готовиться как космический самолет, способный выводить спутники на низкую орбиту. При этом это будет очень выгодная технология. По словам Алана Бонда, являющегося основателем компании, суммы, которые требуются для запуска спутников и других похожих миссий, могут уменьшиться сразу на 95% в том случае, если будет налажено коммерческое производство двигателей Sabre.

Турбореактивный двигатель — плюсы и минусы

Таможенные ограничения

Литература

Коды ракетных двигателей

Обозначение конкретного мотора выглядит как С6-3 . В этом примере буква ( C ) представляет собой общий импульсный диапазон двигателя, цифра ( 6 ) перед чертой обозначает среднюю тягу в ньютонах , а цифра ( 3 ) после черты обозначает задержку в секундах от метательного заряда. выгорание до срабатывания эжекционного заряда ( состав газогенератора , обычно дымный порох , предназначенный для развертывания системы восстановления). Двигатель C6-3 будет иметь импульс от 5,01 до 10 Н · с, вырабатывать среднюю тягу 6 Н и запускать эжекционный заряд через 3 секунды после перегорания.

В 1982 году производители двигателей предприняли попытку уточнить код двигателя, записав перед кодом полный импульс в ньютон-секундах. Это позволило рассчитать продолжительность горения по предоставленным числам. Кроме того, за кодом двигателя следовало буквенное обозначение, обозначающее тип топлива. Обозначения пороха зависят от производителя. Этот стандарт все еще не принят полностью, некоторые производители применяют его части или всю дополнительную номенклатуру.

Принцип действия РД

Теперь стоит разобраться с принципом работы реактивного двигателя. Для этого можно рассмотреть классику – жидкостные двигатели, которые практически не изменились со времен Циолковского. В этих агрегатах применяется топливо и окислитель.

В качестве последнего используется жидкий кислород либо же азотная кислота. В качестве горючего применяют керосин. Современные жидкостные двигатели криогенного типа потребляют жидкий водород. Он при окислении кислородом увеличивает удельный импульс (на целых 30 процентов). Идея о том, что можно использовать водород, также родилась в голове Циолковского. Однако на тот момент по причине чрезвычайной взрывоопасности пришлось искать другое горючее.

Принцип работы состоит в следующем. Компоненты поступают в камеру сгорания из двух отдельных баков. После смешивания они превращаются в массу, которая при сгорании выделяет огромное количество тепла и десятки тысяч атмосфер давления. Окислитель подается в камеру сгорания. Топливная смесь по мере прохождения между сдвоенными стенками камеры и сопла охлаждает эти элементы. Далее горючее, подогретое стенками, попадет через огромное количество форсунок в зону воспламенения. Струя, которая формируется при помощи сопла, вырывается наружу. За счет этого и обеспечивается толкающий момент.

Кратко принцип работы реактивного двигателя можно сравнить с паяльной лампой. Однако последняя устроена значительно проще. В схеме ее работы нет различных вспомогательных систем двигателя. А это компрессоры, нужные для создания давления впрыска, турбины, клапана, а также прочие элементы, без которых реактивный двигатель просто невозможен.

Несмотря на то что жидкостные двигатели потребляют очень много горючего (расход топлива составляет примерно 1000 грамм на 200 килограммов груза), их до сих пор используют в качестве маршевых агрегатов для ракеты-носителей и маневровых для орбитальных станций, а также других аппаратов космического назначения.

Примечания

Тяга

«Сила» ракетного двигателя называется тягой. Тяга измеряется в ньютонах в метрической системе и «фунтах тяги» в США (4,45 ньютона тяги эквивалентны одному фунту тяги). Фунт тяги — это количество тяги, необходимое для удержания 1-фунтового объекта (0,454 кг) неподвижным относительно силы тяжести Земли. Ускорение земной гравитации составляет 9,8 м/с².

Одной из забавных проблем ракет является то, что топливный вес, как правило, в 36 раз больше полезной нагрузки. Потому что помимо того, что двигателю нужно поднимать вес, этот же вес и способствует собственному подъему. Чтобы вывести крошечного человека в космос, нужна огромная ракета и много-много топлива.

Обычная скорость для химических ракет составляет от 8000 до 16 000 км/ч. Топливо горит около двух минут и вырабатывает 3,3 миллиона фунтов тяги на старте. Три основных двигателя космического шаттла, например, сжигают топливо в течение восьми минут и вырабатывают около 375 000 фунтов тяги каждый в процессе горения.

Ссылки

История возникновения электрических ракетных двигателей:

Впервые идею использования электрической энергии высказывал К.Э. Циолковский в 1912 г. еще в начале развития ракетной техники. В статье «Исследование мировых пространств реактивными приборами» (Вестник воздухоплавания, №9, 1912 г.) он писал: «… с помощью электричества можно будет придавать громадную скорость выбрасываемым из реактивного прибора частицам…».

В 1916-1917 гг. Р. Годдард экспериментально подтвердил реальность осуществления этой идеи.

В 1929-1933 гг. под руководством В. П. Глушко был создан один из первых действующих электрических ракетных двигателей. Впоследствии на некоторое время работы по разработке ЭРД были прекращены.

Они возобновились только в конце 1950-х – начале 1960-х гг. и уже к началу 1980-х гг. в СССР и США испытано около 50 различных конструкций электрических ракетных двигателей в составе космических аппаратов и высотных атмосферных зондов.

В настоящее время ЭРД широко используются в космических аппаратах: как в спутниках, так и в межпланетных космических аппаратах.

Устройство реактивного двигателя

В начале, перед каждой турбиной всегда располагается вентилятор, засасывающий воздушные массы из окружающей среды в турбины. Вентиляторы обладают большой площадью, а также колоссальной численностью лопастей специальных конфигураций, материалом для которых послужил титан. Сразу за вентиляторами располагаются мощные компрессоры, которые необходимы для нагнетания воздуха под огромным давлением в камеры сгорания. После камер сгорания горящие топливовоздушные смеси направляются в саму турбину.

Вслед за турбинами потоки направляются в сопла. Сопла реактивных двигателей являются последними, но не самыми последними по своей значимости частями в реактивных двигателях. Они формируют непосредственные реактивные струи. В сопла направляются холодные воздушные массы, нагнетаемые вентиляторами для охлаждения «внутренностей» двигателей. Эти потоки ограничивают манжеты сопел от сверхгорячих реактивных потоков и не позволяют им расплавляться.

Явление отдачи

Но научные поиски и разработки на этом не прекращались. Как всегда, на помощь пришла природа, которая, в большинстве случаев и наталкивает изобретателей на удивительные открытия.

Наблюдения за морскими жителями, такими как осьминоги, кальмары и каракатицы, привели к неожиданным результатам. Манера движения этих морских обитателей, была схожа с кратковременным толчком. Будто тело отталкивается отчего – то и продвигается вперед.

Эти наблюдения были чем-то схожи с замечаниями Гюегенса про выстрел и пушку, которые мы упоминали выше.

Таким образом, в физики появилось понятие «явление отдачи». В ходе дальнейших научных исследований было выяснено, что именно благодаря явлению отдачи происходит все движение на планете Земля: автомобиль отталкивается от земли, корабль – от воды и т.д.

Движение тел происходит благодаря передаче импульса от одного объекта другому. Для объяснения явления приведем простейший пример: вы решили толкнуть своего товарища в плечо, приложили определенную силу, в результате которой, он сдвинулся с места, но и вы испытали силу, отталкивающую вас в противоположную сторону.

Конечно, расстояние, на которое сдвинетесь вы и ваш друг, будет зависеть от ряда факторов: сколько вы весите, как сильно вы его толкнули.

Как устроен реактивный двигатель? Что дает ему такую мощность?

На сегодняшний день этот вид двигателей широко используется в наши дни. Самолеты, ракеты, необычные транспортные средства (летающий костюм железного человека) — все это двигается с помощью газотурбинных двигателей. Кстати, об этом костюме у меня есть статья https://zen.yandex.ru/media/id/5cf58e799511bd00afb4dda1/reaktivnyi-kostium-jeleznogo-cheloveka-5cf62d01babd4000b0927efb

Как же он устроен? Принцип работы такого двигателя прост, но расчеты и конструкция крайне сложны. Проще говоря жидкий кислород, засасываясь в турбину, смешивается с топливом, которое сгорает в камере сгорания и в конце турбины (сопло), образует реактивную струю, толкающую тело.

Устройство

состоит реактивный двигатель из следующих элементов:

— камера для сгорания;

Компрессор состоит из нескольких турбин. Задача компрессора — это всасывать, а затем сживать воздух, который попал через лопасти. За счет сжатия повышается температура и давление. Часть такого сжатого воздуха попадает в камеру сгорания. В ней нагретый воздух смешивается с топливом (керосин) и в результате воспламеняется. Этот этап придает колоссальную тепловую энергию. После смесь, расширяясь, выходит из камеры сгорания на огромной скорости.

Далее этот мощный поток движется еще по одной турбине (задней), лопасти которой вращаются газами. Эта турбина, соединяясь с компрессором в передней части, приводит агрегат в движение Воздух нагретый до высоких температур выходит через выпускную систему (сопло). Высокая температура продолжает расти за счет эффекта дросселирования. Прошу заметить, что корпус турбины состоит и двух оболочек. В первой происходит весь процесс нагрева газа, а во второй происходит охлаждение за счет вентилятора.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector