Жизненный цикл звезды

Обозначения

Ссылки

Это заготовка статьи о пистолете-пулемёте. Вы можете помочь проекту, дополнив её.

Особенности

Именно этот вид барбарисов чаще всего культивируется в садах в качестве декоративной культуры. Родиной барбариса Тунберга считают Японию. Растение представляет собой листопадный кустарник, некоторые разновидности которого в естественной среде могут увеличиваться в длину до 2,5 метров. Однако при выращивании на клумбах чаще всего можно встретить барбарисы высотой всего 100 сантиметров. У культуры развиваются ребристые ветки в форме дуг, окрашенные в оранжевые или красные оттенки. В процессе развития побеги меняют свой окрас на бурый или же темно-коричневый.

Барбарис в открытом грунте формирует кустарник с кроной, напоминающей форму сферы, листва у культуры довольно плотная. Зеленая масса цельнокрайняя, может иметь ромбообразную или овальную форму, также встречаются растения с округлыми или овальными листьями, имеющими немного заостренный конец. Зеленая масса барбариса формируется на черешках длиной в пару сантиметров. Окрас листьев с наружной стороны будет ярко-зеленым, при этом нижняя часть обычно сизая. С приходом осени листья чаще всего меняют свой окрас на желтый или же ярко-красный. Почки у кустарника имеют красный оттенок, развиваются в форме яйца, обычно не превышают в длину 5 мм.

Фаза цветения у декоративных деревьев припадает на весну – как правило, кустарник преображается ближе к концу мая. Плоды барбариса представляют собой кораллово-красные плоды, их длина редко превышает 1 сантиметр, созревание происходит в сентябре-октябре. Ягоды имеют удлиненную форму и красный окрас, благодаря чему увеличивается привлекательность такой культуры, растущей в саду. Барбарис Тунберга – зимостойкое растение, которое также примечательно своим иммунитетом к таким недугам, как ржавчина и мучнистая роса. Среди примечательных особенностей этого растения стоит отметить такие характеристики.

  • Кустарник прекрасно переносит обрезку, поэтому имеющиеся разновидности можно выращивать даже на небольших участках в открытом грунте. Достаточно будет своевременно ограничивать рост молодых побегов, задавая культуре требуемую форму и размер.
  • Благодаря строению побегов барбарис Тунберга можно использовать в саду в качестве живой изгороди. Такие культуры, посаженные рядом, могут послужить прекрасной преградой не только для обзора посторонних, но и для проникновения на территорию животных или человека в неположенных местах.
  • Растение выделяется своей высокой привлекательностью именно осенью. В этот период сочетание окраса листвы и плодов задает культуре красочный и примечательный облик. Кроме того, даже после листопада яркие красные ягоды еще надолго задерживаются на культуре, украшая ее.
  • Большая часть разновидностей выделяется неприхотливостью в плане агротехники, в особенности это касается выбора типа почвы для укоренения.
  • Растение, вне зависимости от размеров куста, можно выращивать на открытых солнечных участках, а также сажать в полутени, в которой барбарис не утратит своей привлекательности.
  • Также культура стойко переносит загрязненность воздуха. Именно поэтому подобную живую изгородь можно высаживать вдоль дороги.

30 интересных вещей о Японии (Спойлер: особенно нас привлекло нетающее мороженое)

Происхождение Солнца, его жизнь и смерть

Наше светило родилось вместе с другими звездами более 4-5 млрд. лет назад. Родильным домом для Солнца стало газовое облако, которое образовалось в результате колоссальных по своим масштабам космических катаклизмов. По одной из версий, облака газа появились в результате Большого Взрыва, который потряс пространство. По своему составу газопылевые облака состояли на 99% из атомов водорода. Лишь 1% приходился на атомы гелия и другие элементы. Весь этот набор элементов под действием сил гравитации получил необходимый импульс и стал плотно сжиматься в одну субстанцию.

Рождение Солнца

Чем быстрее росла масса, тем быстрее становилась скорость вращения. Атомы соединялись в крупные соединения, образуя молекулярный водород и гелий. В результате физических процессов и стремительного вращения в центре облака сложилось шарообразное образование. Появилась протозвезда — древнейшая форма, которая предшествует последующему образованию полноценной звезды. Первоначальное количество космического газа превышало нынешние размеры нашей Солнечной системы. В дальнейшем под воздействием гравитационных сил звездное вещество стало плотно сжиматься, увеличивая массу будущей звезды.

Термоядерный синтез водорода

Термоядерная реакция порождает огромное количество тепловой и световой энергии, которая распространяется от внутренних областей Солнца к его поверхности. Ежесекундно с его поверхности улетучивается в открытый космос более 4 млн. тонн. Учитывая, что наша звезда существует уже не один миллиард лет и продолжает светить без видимых и существенных изменений, можно сделать вывод — запасы водорода у нашего Солнца колоссальны. Когда этот запас исчерпается, остается только догадываться, занимаясь математическими вычислениями. Судя по расчетам ученых, Солнце будет еще так же греть и светить десяток миллиардов лет, пока не закончатся запасы термоядерного топлива.

По мере угасания интенсивности термоядерных процессов начинается заключительная фаза жизни звезды. Плотность звезды уменьшится, а вот ее размеры значительно увеличатся. Вместо желтого карлика Солнце станет Красным гигантом. Достигнув этой стадии, наша звезда покинет главную последовательность и будет спокойно ждать своей смерти. Человечеству не дождаться финала этой драмы, так как гигантское Красное Солнце уничтожит своим огнем практически все живое на нашей планете. Поверхность огромного красного диска раскалиться до температуры 5800 К. Радиус Солнца станет больше в 250 раз по сравнению с нынешними значениями.

Эволюция нашей звезды

В такой фазе наше светило будет пребывать несколько десятков миллионов лет. После того, как температура в центре солнечного ядра достигнет значений 100 миллионов по Кельвину, запустится процесс горения гелия и углерода. Новый виток цепных реакций окончательно истощит Солнце. Сильно уменьшившаяся масса звезды не сможет удерживать внешнюю оболочку, которую пульсирующие термоядерные процессы развеют в пространстве. На месте красного гиганта образуется планетарная туманность, в центре которой останется ядро бывшей звезды — белый карлик. Другими словами, через десятки миллиардов лет наше гостеприимное светило превратится в маленький плотный и горячий объект размерами с нашу планету. В таком состоянии звезда будет пребывать еще довольно длительное время, медленно умирая и тлея.

Что такое главная последовательность диаграммы Герцшпрунга — Рессела

Нам открытие двух астрономов известно как диаграмма Герцшпрунга — Рессела, или диаграмма спектр — светимость.

По горизонтальной оси диаграммы Герцшпрунга — Рессела были отложены спектральные классы в порядке понижения температур звезд, начиная со спектрального класса О (очень горячие звезды) слева и заканчивая спектральным классом М (относительно холодные звезды) справа.

По вертикальной оси были отложены светимости или абсолютные звездные величины. Каждая звезда имеет какую-то определенную абсолютную величину и относится к какому-то определенному спектральному классу, а потому может быть представлена точкой в определенном месте диаграммы.

В среднем чем горячее звезда, тем она ярче. Поэтому чем левее находился на диаграмме спектральный класс исследуемой звезды (и значит, чем больше была ее температура), тем выше оказывалась она по шкале абсолютных величин.

В результате большинство звезд, нанесенных Ресселом на диаграмму, расположилось по диагонали от верхнею левого угла к нижнему правому. Они образуют так называемую главную последовательность.

По современной оценке более 90% всех доступных нашему наблюдению звезд попадают на главную последовательность.

Вас может заинтересовать

  • Темная материя и Вселенная
  • Насколько внеземной разум отличается от разума земного?
  • Как зародилась жизнь на планете Земля
  • Созвездия летнего неба наблюдаемые с территории России
  • Созвездия весеннего неба наблюдаемые с территории России

Диаграмма Герцшпрунга — Рессела даёт возможность (хотя порой и достаточно приблизительно) найти абсолютную величину нужной звезды по её спектральному классу (особенно точно это работает для спектральных классов O—F), оценить её примерный возраст и представить ближайшее будущее и прошлое наблюдаемого объекта.

С красными звездами (о них подробно ниже) ситуация обстоит сложнее – здесь не всегда можно сходу различить  гиганта и карлика, однако при наличии опыта, даже здесь не должно возникнуть ошибок.

Огонь по шашлыкам

Особенности покрытия

Эпизод III. Расцвет жизненного пути звезды

Солнце снятое в линии H альфа. Наше звезда в самом расцвете сил.

В середине своей жизни космические светила могут обладать самыми разнообразными цветами, массой и габаритами. Цветовая палитра варьируется от голубоватых оттенков до красных, а их масса может быть значительно меньше солнечной, либо превышать ее более чем в триста раз. Главная последовательность жизненного цикла звезд длится около десяти миллиардов лет. После чего в ядре космического тела заканчивается водород. Этот момент принято считать переходом жизни объекта на следующий этап. По причине истощения водородных ресурсов в ядре останавливаются термоядерные реакции. Однако в период вновь начавшегося сжатия звезды начинается коллапс, который приводит к возникновению термоядерных реакций уже с участием гелия. Этот процесс стимулирует просто невероятное по масштабам расширение звезды. И теперь она считается красным гигантом.

Середина жизненного цикла звезды[править | править код]

Среди звёзд встречается широкое многообразие цветов и размеров. По спектральному классу они варьируются от горячих голубых до холодных красных, по массе — от 0,0767 до около 300 Солнечных масс по последним оценкам. Светимость и цвет звезды зависят от температуры её поверхности, которая, в свою очередь, определяется её массой. Все новые звёзды «занимают своё место» на главной последовательности согласно своему химическому составу и массе. Речь, естественно, идёт не о физическом перемещении звезды — только о её положении на указанной диаграмме, зависящем от параметров звезды. Фактически, перемещение звезды по диаграмме отвечает лишь изменению параметров звезды.

Звёзды среднего размера, такие как Солнце, остаются на главной последовательности в среднем 10 миллиардов лет. Считается, что Солнце все ещё на ней, так как оно находится в середине своего жизненного цикла. Как только звезда истощает запас водорода в ядре, она покидает главную последовательность.

Файл:Sagittarius Star Cloud.jpg

Звёзды в созвездии Стрельца (вид с Земли на центр галактики Млечный Путь)

Рекомендации

Литература[ | код]

Исторический путь легионов

Общая информация

Эволюция Звезд

Время жизни звезды любого типа – невероятно долгий и сложный процесс, сопровождаемый явлениями космического масштаба. Многогранность его просто невозможно полностью проследить и изучить, даже используя весь арсенал современной науки. Но на основании тех уникальных знаний, накопленных и обработанных за весь период существования земной астрономии, нам становятся доступными целые пласты ценнейшей информации. Это позволяет связать последовательность эпизодов из жизненного цикла светил в относительно стройные теории и смоделировать их развитие. Что же это за этапы?

Использованная литература и источники

Перечень наиболее интересных фактов

Мы живем на планете и думаем, что Земля равноправный член Солнечной системы. Реальность такова, что масса центральной звезды составляет 99,8% от массы Солнечной системы. И большая часть, от оставшихся 0,2% приходит на Юпитер. Таким образом, масса Земли составляет сотые доли массы Солнечной системы.

Солнце на 74% состоит из водорода, и на 24% гелия. Оставшиеся 2% включает в себя небольшое количество железа, никеля, кислорода. Иными словами, Солнечная система в основном состоит из водорода.

Мы знаем, что существуют удивительно большие и яркие звезды, например Сириус или Бетельгейзе. Но они находятся невероятно далеко. Наше собственное светило является относительно яркой звездой. Если бы вы могли взять 50 ближайших звезд в радиусе 17 световых лет от Земли, то она будет 4-й по яркости звездой.

Его диаметр в 109 раз больше Земного, внутри него могли бы поместиться 1300 тысяч Земель. Но существуют гораздо большие звезды, чей диаметр почти достиг бы орбиты Сатурна, если бы звезда была помещена внутрь Солнечной системы.

Астрономы считают, что наша звезда образовалось около 4590 миллионов лет назад. Примерно через 5 миллиардов лет оно войдет в стадию красного гиганта, и раздуется, затем, сбросив внешние слои, превратится в белый карлик.

Хотя наше светило и выглядит как горящий огненный шар, но на самом деле, имеет внутреннюю структуру поделенную на слои. Видимая поверхность, называется фотосфера, она нагрета до температуры около 6000 градусов по Кельвину. Под ней находится зона конвекции, где тепло медленно движется от центра к поверхности, а охлажденное звездное вещество падает вниз. Эта область начинается на расстоянии 70% радиуса. Под зоной конвекции находится радиационный пояс. В этой зоне, тепло передается через излучение. Ядро простирается от центра на расстояние в 0,2 солнечных радиусов. Это место, где температура достигает 13,6 млн градусов Кельвина, и молекулы водорода сливаются в гелий.

Солнце на самом деле медленно нагревается. Оно становится на 10% ярче каждый миллиард лет. В течение всего миллиарда лет, жар будет настолько сильным, что жидкая вода не сможет существовать на поверхности Земли. Жизнь на Земле, исчезнет навсегда. Бактерии смогут жить под землей, но поверхность планеты будет выжженной и необитаемой. Через 7 миллиардов лет оно превратится в красного гиганта, и прежде чем оно расширится, Солнце притянет к себе Землю и уничтожает всю планету.

В отличие от планет, Солнце это огромная сфера из водорода. Из-за этого, различные части вращаются с разной скоростью. Вы можете видеть, насколько быстро вращается поверхность, путем отслеживания движения пятен по поверхности. Вращение на экваторе занимает 25 дней, в то время как на полюсах, полный оборот может занять 36 дней.

Поверхность имеет температуру 6000 градусов Кельвина. Но это гораздо меньше, чем температура атмосферы звезды. Над поверхностью имеется область атмосферы, — называемая хромосферой, ее температура может достигать 100,000 К. Еще более далекие области, называемые короной, достигают температуры 1 млн. К.

Самый известный космический корабль, посланный для наблюдений, запущен в декабре 1995 года и называется SOHO. SOHO постоянно наблюдает за нашим светилом. В 2006 году были запущены два аппарата миссии STEREO. Эти два корабля были разработаны, чтобы наблюдать за активностью с двух разных точек зрения, это дает трехмерные модели нашей звезды, и позволяет астрономам более точно прогнозировать космическую погоду.

В зоне непрерывного контроля

Особенность загоризонтной радиолокационной станции заключается в способности мониторить воздушное пространство за пределами радиогоризонта. Такие РЛС являются частью системы предупреждения о ракетном нападении (СПРН).

Также по теме


«Создание надёжной системы обороны»: Россия развернула загоризонтные РЛС «Подсолнух» на трёх направлениях

Российские загоризонтные РЛС «Подсолнух» развёрнуты на Дальнем Востоке, Балтике и Каспии. Об этом рассказал глава разработавшего эти…

«Загоризонтные РЛС — вид локаторов, предназначенных для сверхдальней разведки воздушного пространства. Они вскрывают намерения противника задолго до того, как его средства воздушного нападения сформируются и предпримут атаку или провокацию с пересечением границы», — говорится в материалах Минобороны РФ. 

В свою очередь, на сайте «РТИ Системы» отмечается, что современные российские загоризонтные радиолокационные станции позволяют передавать необходимую информацию средствам ПВО для обеспечения перехвата воздушных целей.

К достоинствам отечественных РЛС относят непрерывный 24-часовой мониторинг воздушного пространства, высокую степень автоматизации основных процессов, автоматизированную адаптацию к геофизическим и помеховым условиям, а также возможность эксплуатации в различных природно-климатических зонах.

Новейшие российские загоризонтные станции способны практически безошибочно обнаруживать самолёты (с вероятностью не менее 80%). Период обнаружения самолёта в зоне непрерывного контроля не превышает 350 секунд (не более 6 минут). Групповые цели фиксируются за 6—15 минут с момента взлёта.

Заступивший на боевое дежурство «Контейнер» является одной из новейших отечественных разработок в области радиолокации. Станция представляет собой антенное поле, состоящее из 144 мачт высотой с 10-этажный дом каждая. Длина площадки, на которой расположены элементы РЛС, составляет 1300 м, ширина — 200 м. Аппаратурный комплекс станции размещён в транспортабельных контейнерах. Сектор обзора РЛС — 180°, диапазон рабочих частот — 3—30 МГц.

  • Расчёты РЛС «Контейнер» на построении

По данным Минобороны РФ, максимальная дальность действия «Контейнера» составляет 3 тыс. км (по информации разработчика — 6 тыс. км). РЛС может брать на одновременное сопровождение 5 тыс. воздушных объектов. Военные уверены, что детище НИИДАР «обеспечит разведку воздушных объектов, в том числе и гиперзвуковых, над территорией западноевропейских государств и в Юго-Западном регионе».

«Станция является важным звеном в системе стратегического сдерживания, важнейшим звеном и краеугольным камнем в системе разведки и предупреждения о воздушно-космическом нападении», — приводит слова командующего 1-й армии ПВО-ПРО Воздушно-космических сил РФ генерал-лейтенанта Андрея Дёмина пресс-служба Минобороны.

При разработке «Контейнера» специалисты НИИДАР опирались на опыт создания советской загоризонтной РЛС «Дуга». В 1980-е годы она располагалась в Чернобыле и в Комсомольске-на-Амуре. За недолгое время эксплуатации станции отследили свыше 100 запусков американских ракет.

Также по теме


«Незаменим для подготовки к боевым миссиям»: каковы экспортные перспективы российского самолёта Як-130

На стартующем 17 ноября в ОАЭ международном авиасалоне Dubai Airshow 2019 впервые будет представлен российский учебно-боевой самолёт…

Уникальность «Контейнера» заключается в использовании эффекта отражения радиосигнала от ионосферы Земли. Речь идёт о так называемых пространственных волнах. Их применение позволяет мониторить ситуацию на территории, которая недоступна для прямолинейных радиоволн обычных РЛС.

«Станция использует явление отражения радиоволн декаметрового диапазона от ионосферы. Но у этой РЛС есть так называемая мёртвая зона. Она составляет 900 километров, поэтому было принято решение о расположении станции в глубине страны. Это позволяет ей находиться в безопасности и контролировать воздушное пространство сопредельных государств», — заявил в октябрьском интервью РИА Новости генеральный директор НИИДАР Кирилл Макаров.

Топ-менеджер сообщил, что предприятие планирует поставить Минобороны РФ четыре «Контейнера». Станции будут размещены для мониторинга воздушной обстановки на западном, восточном, северо-западном и южном направлениях.

Из числа загоризонтных РЛС, помимо «Контейнера», концерн «РТИ Системы» поставляет в части ВКС России станцию «Подсолнух», которая позволяет контролировать ситуацию в пределах 200-мильной прибрежной экономической зоны. Данная РЛС способна сопровождать до 200 надводных и до 100 воздушных целей. Подобно «Контейнеру, «Подсолнух» также обнаруживает самолёты, изготовленные по технологии «стелс».

Общая информация

Эволюция Звезд

Время жизни звезды любого типа – невероятно долгий и сложный процесс, сопровождаемый явлениями космического масштаба. Многогранность его просто невозможно полностью проследить и изучить, даже используя весь арсенал современной науки. Но на основании тех уникальных знаний, накопленных и обработанных за весь период существования земной астрономии, нам становятся доступными целые пласты ценнейшей информации. Это позволяет связать последовательность эпизодов из жизненного цикла светил в относительно стройные теории и смоделировать их развитие. Что же это за этапы?

Литература

Вселенские вспышки

Гамма вспышка в галактике 4C 71,07

Гиперновые взрывы случаются ещё реже. В нашей галактике такое событие случаются раз в сотни тысяч лет. Однако, гамма-всплески, порождаемые гиперновыми, наблюдаются почти ежедневно. Они настолько мощны, что регистрируются практически со всех уголков Вселенной.

К примеру, один из гамма-всплесков, расположенных в 7,5 миллиардов световых лет, можно было разглядеть невооружённым глазом. Произойти он в галактике Андромеда, земное небо на пару секунд осветила звезда с яркостью полной луны. Произойти он на другом краю нашей галактики, на фоне Млечного Пути появилось бы второе Солнце! Получается, яркость вспышки в квадриллионы раз ярче Солнца и в миллионы раз ярче нашей Галактики. Учитывая, что галактик во Вселенной миллиарды, неудивительно, почему такие события регистрируются ежедневно.

Эволюция Солнца

Предполагается, что Солнце родилось в сжавшейся газопылевой туманности. Есть, по крайней мере, две теории относительно того, что дало толчок первоначальному сжатию туманности. Согласно одной из них предполагается, что один из спиральных рукавов нашей галактики проходил через нашу область пространства примерно 5 млрд. лет назад. Это могло вызвать легкое сжатие и привести к формированию центров тяготения в газо-пылевом облаке. Действительно, сейчас вдоль спиральных рукавов мы видим довольно большое количество молодых звезд и светящихся газовых облаков. Другая теория предполагает, что где-то недалеко (по масштабам Вселенной, конечно) взорвалась древняя массивная сверхновая звезда. Возникшая ударная волна могла быть достаточно сильной, чтобы инициировать звездообразование в «нашей» газо-пылевой туманности. В пользу этой теории говорит то, что ученые, изучая метеориты, обнаружили довольно много элементов, которые могли образоваться при взрыве сверхновой.

Далее, когда столь грандиозная масса (2*1030кг) сжималась под действием сил гравитации, она сама себя сильно разогрела внутренним давлением до температур, при которых в ее центре смогли начаться термоядерные реакции. В центральной части температура на Солнце равна 15000000K, а давление достигает сотни миллиардов атмосфер. Так зажглась новорожденная звезда (не путайте с новыми звездами).

В основном Солнце в начале своей жизни состояло из водорода. Именно водород в ходе термоядерных реакций превращается в гелий, при этом выделяется энергия, излучаемая Солнцем. Солнце принадлежит к типу звезд, называемых желтыми карликами. Оно – звезда главной последовательности и относится к спектральному классу G2. Масса одинокой звезды довольно однозначно определяет ее судьбу. За время жизни (~5 миллиардов лет), в центре нашего светила, где температура достаточно высока, сгорело около половины всего имеющегося там водорода. Примерно столько же, 5 миллиардов лет, Солнцу осталось жить в таком виде, к которому мы с вами привыкли.

После того, как в центре светила водород будет на исходе, Солнце увеличится в размерах, станет красным гигантом. Это сильнейшим образом скажется на Земле: повысится температура, океаны выкипят, жизнь станет невозможной. Затем, исчерпав «топливо» совсем и не имея более сил держать внешние слои красного гиганта, наша звезда закончит свою жизнь как белый карлик, порадовав неведомых нам внеземных астрономов будущего новой планетарной туманностью, форма которой может оказаться весьма причудливой благодаря влиянию планет.

Смерть Солнца по времени

  • Уже через 1,1 млрд. лет, светило увеличит свою яркость на 10 %, что повлечет сильное нагревание Земли.
  • Через 3,5 млрд. лет, яркость увеличиться на 40%. Начнут испаряться океаны и наступит конец всему живому на Земле.
  • По прошествии 5,4 млрд. лет, в ядре звезды закончится топливо – водород. Солнце начнет увеличиваться в размерах, за счет разрежения внешней оболочки и нагрева ядра.
  • Через 7,7 млрд. лет, наша звезда превратиться в красного гиганта, т.к. увеличиться в 200 раз из-за этого будет поглощена планета Меркурий.
  • В конце, через 7,9 млрд. лет, внешние слои звезды настолько разредятся, что распадаться на туманность, а в центре бывшего Солнца будет маленький объект – белый карлик. Так закончит существование наша Солнечная система. Все строительные элементы, оставшиеся после распада, не пропадут, они станут основой для зарождения новых звезд и планет.

Эпизод II. Молодые звезды

Фомальгаут, изображение из каталога DSS. Вокруг этой звезды еще остался протопланетный диск.

Следующим этапом или циклом жизни звезды является период ее космического детства, который, в свою очередь, делится на три стадии: молодые светила малой (<3), промежуточной (от 2 до 8) и массой больше восьми солнечных единиц. На первом отрезке образования подвержены конвекции, которая затрагивает абсолютно все области молодых звезд. На промежуточном этапе такое явление не наблюдается. В конце своей молодости объекты уже во всей полноте наделены качествами, присущими взрослой звезде. Однако любопытно то, что на данной стадии они обладают колоссально сильной светимостью, которая замедляет или полностью прекращает процесс коллапса в еще не сформировавшихся солнцах.

Ссылки

Стоял на вооружении

Ссылки

Смерть сверхгигантов

Остаток сверхновой звезды W49B

Сверхновыми становятся звезды, масса которых превышает 8-10 солнечных масс. Ядра таких звезд, исчерпав, водород, переходят к термоядерным реакциям с участием гелия. Исчерпав гелий, ядро переходит к синтезу всё более тяжелых элементов. В недрах звезды создаётся всё больше слоёв, в каждом из которых происходит свой тип термоядерного синтеза.  В конечной стадии своей эволюции такая звезда превращается в «слоёный» сверхгигант.  В его ядре происходит синтез железа, тогда как ближе к поверхности продолжается синтез гелия из водорода.

Слияние ядер железа и более тяжёлых элементов происходит с поглощением энергии. Поэтому, став железным, ядро сверхгиганта больше не способно выделять энергию для компенсации гравитационных сил. Ядро теряет гидродинамическое равновесие и приступает к беспорядочному сжатию. Остальные слои звезды продолжают поддерживать это равновесие, до тех пор, пока ядро не сожмётся до некого критического размера. Теперь гидродинамическое равновесие теряют остальные слои и звезда в целом. Только в этом случае «побеждает» не сжатие, а энергия, выделившая в ходе коллапса и дальнейших беспорядочных реакций. Происходит сброс внешней оболочки – вот что такое сверхновый взрыв.

Что считается моментом рождения звёзд?

Главный и важный этап в эволюции звёзд начинается с объединения молекул водорода в одно облако. А как известно, во всей Вселенной он является самым распространённым элементом (за ним следует гелий, который также участвует в звездообразовании).Вот и получается молекулярное облако, которое часто называют звёздной колыбелью. В результате гравитационной неустойчивости начальная флуктуация плотности молекул увеличивается. Проще говоря, со временем увеличиваются случайные отклонения концентрации вещества под силами гравитации.

Молекулярное облако

А так как космическая пустота не совсем пустота, а состоит из молекул водорода, то при определённых условиях их объединение подвергается гравитационному коллапсу.Условия, которые его вызывают, могут быть разные. Например, расположение облака вблизи взрыва сверхновой, или столкновение двух облаков, или столкновение, поглощение галактик и т.д.

Взрыв сверхновой

Стоит отметить, что молекулы, даже объединённые, двигаются в пространстве. Чаще всего они вращаются вокруг галактик или других космических объектов, имеющих более высокую гравитационную силу.

По данным учёных, в галактической пустоте содержится от 0,1 до 1 молекулы на кубический сантиметр. А в облаке их плотность примерно 1 миллион молекул на кубический сантиметр. Безусловно, масса и размер такого облачного образования больше в сотни тысяч раз солнечной.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector