Вакуумная бомба: правда и вымысел

CL-20

Взрывчатка CL-20 на сегодня позиционируется, как одна из самых мощных. В частности, СМИ, в том числе и российские, утверждают, что один кг CL-20 вызывают разрушения, на которые требуется 20кг тротила.

Интересно, что деньги на разработку СL-20 Пентагон выделил лишь после того, как в американской прессе появилось сообщение, что такую взрывчатку уже сделали в СССР. В частности один из докладов на эту тему назывался так: «Возможно, это вещество разработано русскими в институте Зелинского».

В реальности в качестве перспективного взрывчатого вещества американцы рассматривали другую взрывчатку, впервые полученную в СССР, а именно диаминоазоксифуразан. Наряду с высокой мощностью, значительно превосходящей октоген, оно обладает низкой чувствительностью. Единственное, что сдерживает его широкое применение – отсутствие промышленных технологий.

Почему важно не только изобрести, но и пробить изобретению дорогу в жизнь

Однако вернемся в 1940 году. Как только взрывчатка А-IX-2 была создана, родное начальство Ледина тут же решило выдвинуть ее на соискание Сталинской премии, но Ледин отказался — он считал, что взрывчатку нужно сначала тщательно испытать. Он сам снаряжает ею корпуса 37-мм и 100-килограммовые корпуса 180-мм снарядов. Производятся стрельбы. Результаты блестящи, и отчеты рассылаются во все инстанции.

А тут подоспела и война, и стало очевидно, что это уникальная взрывчатка не только для морских снарядов, но и для противотанковой артиллерии. Снаряжаются A-IX-2 400 штук 45-мм снарядов к противотанковой пушке, и снова проводится испытание. Последний отчет матрос Ледин печатает уже под бомбами блокадного Ленинграда и снова успевает отправить его во все инстанции.

Казалось бы, что в связи с войной за эту взрывчатку должны были ухватиться все генералы и адмиралы, тем более что гексоген в СССР на тот момент хотя и производился только в полупромышленных масштабах, но даже такое его количество не использовалось полностью, а тринитротолуола катастрофически не хватало.

Отчет о A-IX-2, как пишет Ледин, был «разослан в Артиллерийское управление ВМФ, Главное артиллерийское управление РККА, Народный комиссариат боеприпасов и Артиллерийскую академию имени Ф. Э. Дзержинского», но «ни Артиллерийский комитет ГАУ РККА, ни наркомат боеприпасов не только не отозвались по существу изложенных вопросов, но даже не подтвердили его получения».

К счастью, из-за нехватки офицеров матроса Ледина посылают в Москву в Наркомат ВМФ за таблицами стрельб. А в Москве уже паника, и Наркомат ВМФ выехал во главе с наркомом и со всем самым ценным в Казань. Оставленный в здании наркомата в Москве капитан первого ранга приказывает матросу Ледину принять участие в сжигании «малоценных» бумаг. Так Ледин спас из костра свой отчет о A-IX-2, посланный нашему главному флотоводцу Н.Г. Кузнецову.

Дежурному по Наркомату ВМФ каперангу было не до взрывчатки, у него под окном стояла машина в готовности умчать каперанга из Москвы, и он отсылает Ледина в наркомат боеприпасов. Оставшимся в этом наркомате тоже не до взрывчатки Ледина, но по другой причине: в дни всеобщей паники в Москве наркомат боеприпасов вывез из Москвы все оборудование по снаряжению снарядов и мин взрывчаткой, а теперь наркомату дана команда начать их снова снаряжать в Москве. Снаряжать не на чем. И дежурный по этому наркомату посылает Ледина организовать снаряжение снарядов и мин взрывчаткой на карандашных, конфетных и других фабриках Москвы. В энциклопедическом сборнике «Оружие победы» в разделе «Пороха, взрывчатые вещества и пиротехнические средства» инженер Ледин сначала упоминается как автор «раздельно-шашечного метода снаряжения», а уж потом как автор взрывчатки на основе гексогена.

А на фронте в это время вооружают солдат бутылками с бензином, выдают рекомендации держать в окопах ведра с песком, и когда немецкий танк проезжает мимо, то запрыгивать на него с ведром и засыпать песком воздушные фильтры…

А в это время в Москве: «Обращения к командованию Артиллерийского управления ВМФ по поводу реализации результатов разработки новых ВВ для повышения эффективности противотанковой артиллерии РККА оказались совершенно безрезультатными», — пишет Ледин.

История создания и применения

Рождением своим боеприпасы объемного взрыва (как и многое другое оружие) обязаны недоброму германскому оружейному гению

Во время последней мировой войны немцы обратили внимание на мощность взрывов, которые случаются в угольных шахтах. Они попытались использовать те же физические принципы для производства нового типа боеприпасов. Ничего реального у них не вышло, а после поражения Германии эти наработки попали к союзникам

О них забыли на долгие десятилетия. Первыми про объемные взрывы вспомнили американцы во время вьетнамской войны

Ничего реального у них не вышло, а после поражения Германии эти наработки попали к союзникам. О них забыли на долгие десятилетия. Первыми про объемные взрывы вспомнили американцы во время вьетнамской войны.

Во Вьетнаме американцы очень широко применяли боевые вертолеты, с помощью которых они снабжали свои войска и эвакуировали раненых. Довольно серьезной проблемой стало строительство посадочных площадок в джунглях. Расчистка участка для посадки и взлета лишь одного вертолета требовала напряженной работы целого саперного взвода в течение 12-24 часов. Расчищать площадки с помощью обычных взрывов не представлялось возможным, потому что они оставляли после себя огромные воронки. Вот тогда-то и вспомнили про боеприпасы объемного взрыва.

Боевой вертолет мог нести на борту несколько подобных боеприпасов, взрыв каждого из них создавал площадку вполне пригодную для посадки.

Также весьма эффективным оказалось и боевое применение объемных боеприпасов, они оказывали сильнейший психологический эффект на вьетнамцев. Укрыться от подобного взрыва было весьма проблематично даже в надежном блиндаже или бункере. Американцы успешно применяли бомбы объемного взрыва для уничтожения партизан в туннелях. В это же время разработкой подобных боеприпасов занялись и в СССР.

Американцы оснащали свои первые бомбы различными видами углеводородов: этилена, ацетилена, пропана, пропилена и других. В СССР экспериментировали с разнообразными металлическими порошками.

Однако боеприпасы объемного взрыва первого поколения были довольно требовательны к соблюдениям правил бомбометания, они сильно зависели от погодных условий, плохо работали при отрицательных температурах.

Для разработки боеприпасов второго поколения американцы использовали ЭВМ, на котором они моделировали объемный взрыв. В конце 70-х годов прошлого века в ООН была принята конвенция о запрете этого оружия, но это не остановило его разработки в США и СССР.

Сегодня уже разработаны боеприпасы объемного взрыва третьего поколения. Работы в этом направлении активно ведутся в США, Германии, Израиле, Китае, Японии и в России.

Нитрометан

Гоночный фанатик тестировал все виды боеприпасов и усилителей мощности, чтобы повысить производительность своих автомобилей в течение почти 75 лет. Нитрометан считался самым мощным химическим веществом. Чтобы придать машине скорость на пике уничтожения, требуется большое количество нитро, чтобы обеспечить достаточную мощность.

Этот химикат индивидуально обладает кислородом. Он может воспламениться даже без воздуха, что делает возможным использование монотоплива, который может привести к сгоранию даже без воздуха. Из-за этого он использовался однажды как топливо для ракет. Очистка растворителя, очистка пестицидов, лакировка и медикаменты являются одними из промышленных преимуществ нитрометана.

Уровень токсичности нитрометана низкий. Центральная нервная система (ЦНС), например, головокружение, сонливость, головные боли, смерть, потеря сознания, а также раздражение дыхательных путей — вот некоторые из его эффектов. Кроме того, нитрометан может вызывать рак согласно исследованиям на животных.

Работы по усовершенствованию характеристик взрывчатки СL 20

Разработчиками нового взрывчатого вещества велись работы по повышению устойчивости его к ударам и встряскам. Профессор А. Мицгер нашел способ кристаллизации нового вещества, содержащего 2 части СL 20 и одну часть октогена, которое лишено этого недостатка. При этом степень детонации несколько упала (9480 м/сек). Но все равно эта взрывчатка считается пока самой мощной.

Над усовершенствованием СL 20, повышением его энергонасыщения, работала группа ученых из России и Китая. Результатом их труда стали новые характеристики взрывчатки.

Ученые сумели поднять скорость горения CL 20 путем добавления к нему окислителя N2O4. Это очень мощный окислитель, который широко используется в ракетной технике. Из полученной смеси путем кристаллизации был получен новый CL 20, уже с захваченными молекулами окислителя.

Проведенные опыты по сжиганию нового вещества обнаружили лучшие показатели по скорости горения, а значит и по повышению мощности взрыва. По их заверениям мощность взрыва 1 кг нового вещества эквивалентна 20 кг взрыва тротила. Новый способ внедрения в молекулу вещества окислителя науке не известен и получен впервые.

Испытания «Матери всех бомб»

До 2007 года американская фугасная авиационная бомба, которую военные США ласково называли Mother Of All Bombs, считалась крупнейшей неядерной бомбой в мире. В длину снаряд составляет более 9 метров, ее вес – 9,5 тонны. Причем большая часть этого веса приходится именно на взрывчатое вещество. Сила взрыва – 11 тонн в тротиловом эквиваленте. То есть двух «Мам» достаточно, чтобы разнести в пыль средний мегаполис. Однако радует тот факт, что до сих пор бомбы этого типа в ходе военных действий не использовались. Но одна из «Мам» на всякий случай была отправлена в Ирак. Видимо, в расчете на то, что миротворцам без весомых аргументов не обойтись.

«Мать всех бомб» была самым мощным неядерным боеприпасом, пока не появился «Папа всех бомб»

Как гласит официальное описание боеприпаса, «силы взрыва MOAB достаточно, чтобы уничтожить на поверхности танки и людей в пределах нескольких сот метров и деморализовать войска в окрестности, которые выжили при взрыве».

Размеры американской авиабомбы впечатляют

Гексоген

Еще в 1899 году для лечения воспаления в мочевых путях немецкий химик Ганс Геннинг запатентировал лекарство гексоген – аналог известного уротропина. Но вскоре медики потеряли к нему интерес из-за побочной интоксикации. Только через тридцать лет выяснилось, что гексоген оказался мощнейшим взрывчатым веществом, причем, более разрушительным, чем тротил. Килограммовая взрывчатка гексогена произведет такие же разрушения, как и 1.25 килограмм тротила.

Специалисты-пиротехники в основном характеризуют взрывчатые вещества фугасностью и бризантностью. В первом случае говорят об объеме газа, выделенного при взрыве. Мол, чем он больше, тем мощнее фугасность. Бризантность, в свою очередь, зависит уже от скорости образования газов и показывает, как взрывчатка может дробить окружающие материалы.

10 грамм гексогена при взрыве выделяют 480 кубических сантиметров газа, тогда как тротил – 285 кубических сантиметров. Иными словами, гексаген в 1.7 мощнее тротила по фугасности и динамичнее в 1,26 раза по бризантности.

Однако в СМИ чаще всего использует некий усредненный показатель. Например, атомный заряд «Малыш», сброшенный 6 августа 1945 года на японский город Хиросима, оценивают в 13-18 килотонн в тротиловом эквиваленте. Между тем это характеризует не мощность взрыва, а говорит о том, сколько необходимо тротила, чтобы выделилось столько же тепла, как и при указанной ядерной бомбардировке.

Взрывчатка ТГА

Теперь, надеюсь, понятно, насколько важно было найти для советского военно-морского флота взрывчатое вещество, хотя бы сравнимое по мощности с тем, что имели немцы. И нам в этом сначала помогли сами немцы

После заключения Пакта о ненападении с СССР в 1939 году они, хвастаясь, стали пускать советские делегации на свои военные заводы. Капитан первого ранга Н.И. Шибаев, проходя экскурсией по мастерской, в которой немцы снаряжали взрывчаткой свои торпеды, сумел незаметно от них умыкнуть ее крошечный кусочек. (Обычно такие пробы уносят под ногтями.) Вот эта проба и попала к химику Е.Г. Ледину, который проанализировал образец и создал свою первую взрывчатку — копию немецкой. Названа она была ТГА.

Учитывая важность того, что сделал Е.Г. Ледин, еще в 1940 году Совет Труда и Обороны СССР принял постановление снаряжать боевые отделения советских торпед взрывчаткой ТГА

А в 1942 году Ледин, уже занимаясь делом, о котором ниже, узнал, что советская подводная лодка К-21, под командованием капитана второго ранга Н.А. Лунина, попала двумя торпедами в немецкий линкор «Тирпиц», но тот не затонул. Обеспокоенный тем, что советские торпеды не снаряжаются взрывчаткой ТГА, Ледин написал письмо наркому военно-морского флота адмиралу Н.Г. Кузнецову, сравнив атаку «Тирпица» с атакой «Ройял-Оука». Кузнецов проявил «живое» участие в этом деле, он на письме собственноручно начертал: «Товарищу Шибаеву: «Ройял-Оук» — стар. Но почему не снаряжают? Кузнецов». Далее Ледин пишет от себя: «На этом дело и закончилось. И только после войны в снаряжении минно-торпедного вооружения наступила пора коренных усовершенствований, значительно повысивших его эффективность».

Основные свойства ВВ

Вам будет интересно:Пополняем словарный запас: гвалт — это…

Их главными свойствами являются:

  • восприимчивость к наружным влияниям;
  • бризантность;
  • характерное агрегатное состояние;
  • количество энергии, выделяемое при взрыве;
  • химическая устойчивость;
  • стремительность детонации;
  • плотность;
  • фугасность;
  • длительность и обстоятельства работоспособного состояния.

Каждое взрывчатое вещество можно подробно описать, используя все его характеристики, но в большинстве случаев используют две из них:

  • Бризантность (ломать, дробить, разбивать). Т. е. это способность взрывчатого вещества производить разрушающие действия. Чем выше бризантность, тем быстрее формируются при взрыве газы и с большей силой происходит взрыв. В результате хорошо раздробится корпус снаряда, осколки разлетятся с большой скоростью, произойдет сильная ударная волна.
  • Фугасность – мера работоспособности ВВ, выполняющего разрушительные, метательные и другие действия. Основное влияние на нее оказывает объем газа, выделяемый при взрыве. Огромное количество газа способно осуществить большую работу, например, выбросить из района взрыва бетон, грунт, кирпич.

Бризантные взрывчатые вещества, обладающие повышенной фугасностью, подойдут для взрывных работ в шахтах, при ликвидации ледяных заторов, устройстве различных котлованов

При изготовлении снарядов сначала обращают внимание на бризантность, а фугасность отступает на второй план

Полимерный азот

Идеальной взрывчаткой могло бы стать соединение, в котором
присутствуют только атомы азота. Создание такого полимерного азота ученые
предсказали еще в начале 90-х. Впервые вещество экспериментально получили в
2004 году в России, однако для его синтеза требуется давление свыше миллиона
атмосфер, что исключает практическое применение такой взрывчатки.

Ученые продолжают поиски самого лучшего взрывчатого вещества
— согласно прогнозам, некоторые виды нитридов, в которых несколько атомов азота
особым образом соединены с атомами хрома, циркония или гафния, могут обладать
чудовищным энергетическим потенциалом, схожим с полимерным азотом.

Из воздуха и воды

Взрывчатые вещества на основе аммиачной селитры были запатентованы в 1867 году, но по причине высокой гигроскопичности долго не применялись. Дело сдвинулось с мертвой точки лишь после развития производства минеральных удобрений, когда были найдены эффективные способы предотвращения слеживаемости селитры.

Большое количество открытых в XIX веке взрывчатых веществ, содержащих азот (мелинит, тротил, нитроманнит, пентрит, гексоген), требовало большого количества азотной кислоты. Это подвигло немецких химиков на разработку технологии связывания атмосферного азота, что, в свою очередь, дало возможность получать взрывчатку без участия минеральных и ископаемых видов сырья.

Снос обветшавшего моста при помощи бризантных зарядов. Такая работа — это искусство предвидения последствий.

Вот так взрываются шесть тонн аммонала.

Аммиачная селитра, служащая основой взрывчатых композитов, в буквальном смысле вырабатывается из воздуха и воды по методу Габера (того самого Фрица Габера, который известен как создатель химического оружия). Взрывчатые вещества на основе аммиачной селитры (аммониты и аммоналы) произвели переворот в промышленном взрывном деле. Они оказались не только очень мощными, но и исключительно дешевыми.

Таким образом, горнодобывающая и строительная промышленность получила дешевую взрывчатку, которая при необходимости может быть с успехом использована и в военном деле.

В середине XX века в США распространились композиты из аммиачной селитры и дизельного топлива, а затем были получены водонаполненные смеси, хорошо подходящие для взрывов в глубоких вертикальных скважинах. В настоящее время список применяемых в мире индивидуальных и композитных взрывчатых веществ насчитывает сотни наименований.

Итак, подведем краткий и, возможно, неутешительный для кого-то итог нашему знакомству с взрывчатыми веществами. Мы с вами познакомились с терминологией взрывного дела, узнали, какие бывают взрывчатки и где они применяются, немного вспомнили историю. Да, мы ничуть не улучшили своего образования в плане создания взрывчатых веществ и взрывных устройств. И это, скажу я вам, к лучшему. Будьте счастливы при малейшей возможности.

Рукой ребенка
Военный инженер Джон Ньютон.

Ярким примером работ, которые были бы невозможными без взрывчатых веществ, можно считать разрушение скалистого рифа Флад Рок в Воротах Ада — узком участке пролива Ист-Ривер около Нью-Йорка.

На производство этого взрыва было употреблено 136 тонн взрывчатки. На площади 38220 квадратных метра было проложено 6,5 километра галерей, в которых разместили 13280 зарядов (в среднем по 11 килограмм взрывчатки на заряд). Работы производились под руководством ветерана гражданской войны Джона Ньютона.

10 октября 1885 года в 11:13 двенадцатилетняя дочь Ньютона подала электрический ток на детонаторы. Вода поднялась кипящей массой на площади 100 тысяч квадратных метров, было отмечено три последовательных подземных толчка в течение 45 секунд. Шум от взрыва продолжался около минуты и был слышен на расстоянии пятнадцати километров. Благодаря этому взрыву путь к Нью-Йорку из Атлантического океана сократился более чем на двенадцать часов.

Бризантные ВВ, обладающие нормальной мощностью

Эти вещества имеют длительный период хранения (за исключением динамитов), на них не оказывают ощутимого влияния внешние факторы, при практическом использовании они безопасны.

К бризантным взрывчатым веществам относится:

Тротил – это вещество в виде кристаллов, имеющее желтоватый или коричневатый цвет, горькое на вкус. Температура плавления – 81 °С, а вспышки — 310 °С. На открытом воздухе горение тротила сопровождается пламенем желтоватого цвета с сильной копотью без взрыва, а в закрытом помещении может произойти детонация. Вещество с металлами химической активности не проявляет, практически не чувствительно к ударам, трению и тепловому воздействию. Вступает во взаимосвязь с соляной и серной кислотой, бензином, спиртом, а также ацетоном. Например, при простреле литой и прессованный ружейной пулей тротил не загорается, и взрыва не происходит. Для боеприпасов его применяют в различных сплавах и чистом виде. Вещество используют в виде прессованных шашек различных размеров при выполнении подрывных работ.
Пикриновая кислота – бризантное вещество в виде кристаллов, имеющих желтый цвет и горький вкус. Она обладает большей восприимчивостью к воздействию тепла, удара и трения, чем тротил, может взорваться от прострела ружейной пули. Пламя при горении сильно коптит. При большом скоплении вещества происходит детонация. По сравнению с тротилом, пикриновая кислота является более мощным ВВ.
Динамиты – имеют разную рецептуру и содержат нитроглицерин, нитроэфиры, селитру, древесную муку и стабилизаторы. Основное применение – народное хозяйство. Главное свойство динамитов – водоустойчивость и значительная мощность. Их недостатком считается увеличенная восприимчивость к термическим и механическим влияниям

Это требует проявления осторожности при транспортировке и проведении взрывных работ. Через полгода динамиты утрачивают способность к детонации

Кроме того, они замерзают при отрицательной температуре около 20 °С и становятся опасными при эксплуатации.

Машины на базе

Взрывчатый краситель

В 1868 году британскому химику Фредерику-Августу Абелю после шестилетних исследований удалось получить прессованный пироксилин. Однако в отношении тринитрофенола (пикриновой кислоты) Абелю была отведена роль «авторитетного тормоза». Еще с начала XIX века были известны взрывчатые свойства солей пикриновой кислоты, но о том, что сама пикриновая кислота способна к взрыву, никто не догадывался до 1873 года. Пикриновая кислота на протяжении века использовалась как краситель. В те времена, когда началось оживленное испытание взрывчатых свойств разных веществ, Абель несколько раз авторитетно заявлял о том, что тринитрофенол абсолютно инертен.

Трехмерная модель молекулы тринитрофенола.

Герман Шпренгель был немцем по происхожде-нию, но жил и работал в Великобритании. Именно он дал французам воз-можность заработать денег на секретном мелините.

В 1873 году немец Герман Шпренгель, создавший целый класс взрывчатых веществ, убедительно показал способность тринитрофенола к детонации, но тут возникла другая сложность — прессованный кристаллический тринитрофенол оказался очень капризным и непредсказуемым — то не взрывался, когда надо, то взрывался, когда не надо.

Пикриновая кислота предстала перед французской Комиссией по взрывчатым веществам. Было установлено, что она — мощнейшее бризантное вещество, уступающее разве только нитроглицерину, но ее слегка подводит кислородный баланс. Также выяснили, что сама пикриновая кислота обладает низкой чувствительностью, а детонируют ее соли, образующиеся при длительном хранении. Эти исследования положили начало полному перевороту во взглядах на пикриновую кислоту. Окончательно недоверие к новому взрывчатому веществу было рассеяно работами парижского химика Тюрпена, который показал, что плавленая пикриновая кислота неузнаваемо меняет свои свойства по сравнению с прессованной кристаллической массой и совершенно теряет свою опасную чувствительность.

Это интересно: позже выяснилось, что сплавлением решаются проблемы с детонацией у сходной с тринитрофенолом взрывчатки — тринитротолуола.

Такие исследования, разумеется, были строго засекречены. И в восьмидесятые годы XIX века, когда французы стали выпускать новое взрывчатое вещество под названием «мелинит», Россия, Германия, Великобритания и США проявили к нему огромный интерес. Ведь фугасное действие боеприпасов, снаряженных мелинитом, выглядит внушительным и в наши дни. Активно заработали разведки, и спустя недолгое время тайна мелинита стала секретом Полишинеля.

В 1890 году Д. И. Менделеев писал морскому министру Чихачеву: «Что же касается до мелинита, разрушительное действие коего превосходит все данные испытания, то по частным источникам с разных сторон однородно понимается, что мелинит есть не что иное, как сплавленная под большим давлением остывшая пикриновая кислота».

Примечания

Метательные взрывчатые вещества

Попросту говоря, метательные ВВ — это порох.

Черный (дымный) порох представляет собой спрессованную, а затем размельченную на зерна различной крупности механическую смесь состоящий на 75% из калиевой селитры, на 15% из угля и на 10% из серы. Его зерна черные с темно-сизым отливом, блестящие.

Черный (дымный) порох

Черный порох легко воспламеняется от удара, трения, искры, прострела пулей и т.п. Гигроскопичен, теряет способность к горению при сравнительно небольшом его увлажнении (более 2%), при этом из блестящего становится матовым.

При зажигании пороха, заключенного в замкнутую оболочку, его горение существенно ускоряется (400 м/с), и он способен выполнить некоторую механическую работу (слабое дробление и отбрасывание).

В настоящее время, дымный порох применяется в так называемых дистанционных составах (замедлителях) в артиллерийских боеприпасах, дробных охотничьих патронах и в вышебных зарядах некоторых инженерных боеприпасов, а также в огнепроводных шнурах.

Бездымный порох получают из нитроцеллюлозы (последняя получается из хлопка или древесины), растворяя ее в спиртоэфирной смеси (пироксилиновые пороха), или в нитроглицерине (нитроглицериновые пороха) с добавлением веществ, называемых стабилизаторами, для увеличения стойкости порохов при хранении. Представляет собой плотную массу по внешнему виду напоминающую пластмассу, в цветовой гамме может варьироваться от желтого до коричневого.

Бездымный порох

В отдельные сорта бездымного пороха вводятся также специальные добавки для уменьшения скорости горения, для получения беспламенного выстрела и т.п.

Форма отдельных элементов бездымного пороха может быть различной: для снаряжения винтовочных патронов и вышибных минометных зарядов применяется мелкий пластинчатый (зернистый) порох, для снаряжения гильз артиллерийских снарядов и ракет — цилиндры разной длины и диаметра, имеющие, как правило, параллельно своей оси сквозные каналы тоже различного диаметра (от сотых долей миллиметра до 2-3 см).

Термобарические боеприпасы

Наряду с БОВ широко известен термобарический боеприпас (ТББ). При том же эффекте окисления ВВ в воздухе, принцип действия такого боеприпаса отличается от БОВ.

Вследствие подрыва центрального разрывного заряда происходит детонация термобарической смеси. Образовавшаяся взрывная волна обеспечивает быстрое перемешивание с воздухом и сгорание термобарического состава. В ТББ используется смесь на основе нитроэфиров и алюминиевого порошка.

Преимущества ТББ перед объемно-детонирующим:

  • отсутствие ограничений по массе ВВ. Это позволило создавать огневые средства для вооружения отдельных военнослужащих;
  • нечувствительность к атмосферным явлениям.

Под ТББ разработано несколько образцов оружия. Наиболее распространенные из них:

  • реактивный пехотный огнемет «Шмель»;
  • выстрелы для РПГ-7;
  • гранаты для подствольного гранатомета.

Одновременно продолжаются работы по созданию термобарических боеприпасов повышенной мощности.

сказка

Первое взрывчатое вещество — черный порох — было создано очень рано в истории человечества, потому что все компоненты ( нитрат калия , сера и древесный уголь ) легко доступны. «Liber Ignium» ( книга огня ) Марка Грэка из 11 века с сохранившимися копиями начала 13 века до сих пор содержит несколько вариантов рецептов. Но только во второй половине 14-го века он все чаще использовался, в основном в огнестрельном оружии и в качестве взрывчатого вещества.

Первыми синтетическими взрывчатыми веществами были нитроглицерин , открытый Асканио Собреро в Турине в 1847 году , и нитрат целлюлозы ( нитроцеллюлоза или пушечный хлопок ) в 1846 году . Поскольку тринитрат глицерина очень чувствителен к вибрациям, а недостаточно нейтрализованный нитрат целлюлозы имеет тенденцию к самовоспламенению, причина которого изначально не была установлена, обращение с ним было очень опасным. В 1862 году Альфред Нобель изобрел первоначальную искру, а в 1867 году ему удалось произвести динамит в Крюммеле близ Гестахта путем поглощения тринитрата глицерина в кизельгуре . В 1875 году Нобель нашел желатин, самое сильное коммерческое взрывчатое вещество того времени, путем желатинизации жидкого тринитрата глицерина с 6-8% твердого нитрата целлюлозы. Поскольку желатин для взрывных работ все еще был довольно чувствителен к ударам и был дорогим, так называемые гелеобразные взрывчатые вещества были разработаны путем добавления древесной муки и нитратов . С ними безопасно обращаться и они чувствительны к детонаторам. Тем временем их вытесняют взрывчаткой из нитрата аммония , особенно в области экстракционных взрывных работ .

Пикриновая кислота и м-тринитро-крезол, сырье для которых было получено из каменноугольной смолы, являются одними из самых старых военных взрывчатых веществ . Однако у них был главный недостаток: они образовывали на внутренней стенке гранат чувствительные к ударам пикраты тяжелых металлов, что приводило к стрельбе . По этой причине перед заполнением гранаты внутри были окрашены. Когда перегонка нефти смогла дать достаточно толуола, TNT заменил своих предшественников в качестве часто используемого, очень безопасного взрывчатого вещества военного назначения.

Современные взрывчатые вещества часто состоят из гексогена , нитропента или этилендинитрамина. Октоген является одним из самых взрывоопасных взрывчатых веществ, но он сложен и очень дорог в производстве. Он используется почти исключительно для специальных зарядов , например для кумулятивных зарядов , когда требуется очень высокая взрывоопасность.

литература

  • Мануэль Баец: Черный порошок для выживания. Импровизация из черного пороха и подобных смесей . Survival Press, Радольфцелль 2005, ISBN 3-937933-07-7 .
  • Рудольф Бидерманн: Взрывчатые вещества — их химия и технология . Репринт 2000 года выпуска. Survival Press, Radolfzell 1918, ISBN 3-89811-839-8 .
  • Ричард Эскалес: Взрывчатые вещества . В: исходные взрывчатые вещества . Репринт 2002 года выпуска. 7 том. Survival Press, Radolfzell 1917, ISBN 3-8311-3939-3 .
  • Йохен Гарц: От греческого огня до динамита. Культурная история взрывчатых веществ. ES Mittler & Sohn, Гамбург 2007, ISBN 978-3-8132-0867-2 .
  • Оскар Гуттманн: Справочник по взрывным работам . Survival Press, Radolfzell 1899, Reprint 2001, ISBN 3-8311-3095-7 .
  • Фриц Хан: Оружие и секретное оружие немецкой армии 1933–1945. Бернард и Грефе, Бонн 1998, ISBN 3-7637-5915-8 .
  • Рудольф Кнолль: Огненная ртуть и подобные взрывчатые вещества . Survival Press, Radolfzell 1917, Reprint 2001, ISBN 3-8311-2876-6 .
  • А. Лангханс: Взрывчатые вещества в химической лаборатории — неожиданные взрывы. Survival Press, Radolfzell 1930, Reprint 2006, ISBN 978-3-937933-18-4 .
  • Зигфрид Юлиус фон Ромоцкий: История взрывчатых веществ. Том 1. Химия взрывчатых веществ, технология взрывных работ и торпеды до начала современной эры, с введением Макса Янса . Survival Press, (Берлин и) Радольфцелл 1895, перепечатка Хильдесхайма 1976 и 1983 годов, перепечатка 2003 года, ISBN 3-8330-0702-8 .
  • Зигфрид Юлиус фон Ромоцкий: История взрывчатых веществ. Том 2. Коллоидные порошки в их развитии до настоящего времени. Survival Press, Radolfzell 1896, Reprint 2004, ISBN 3-937933-00-X .

Почему важно качество взрывчатых веществ на флоте

В военно-морском деле чрезвычайную важность имеет мощность взрывчатого вещества в снарядах корабельной артиллерии, торпедах, минах, сегодня — ракетах. Поскольку в морских сражениях дело может решить один-единственный выстрел, одна-единственная мина или торпеда

Пара примеров.

24 мая 1941 года английская эскадра атаковала немецкий линкор «Бисмарк». «Бисмарк» быстро пристрелялся, и в третьем залпе один снаряд попал в английский линейный крейсер «Худ». Этого оказалось достаточно: «Худ», корабль такого же водоизмещения, как и «Бисмарк», немедленно затонул вместе с 1416 членами экипажа (подобрать с воды удалось всего трех человек).

27 мая 1941 года англичане все же «достали» «Бисмарк». Лен Дейтон описывает это так: «К месту действия подтягивались все новые и новые английские корабли, выпускавшие по «Бисмарку» торпеды, но тот никак не тонул. В 10.44 командующий соединением передал полный отчаяния приказ: «Всем кораблям, имеющим торпеды, выпустить их по «Бисмарку». В конце концов команда немецкого линкора решила завершить дело сама. Была взорвана крюйт-камера, и «Бисмарк» превратился в «адское горнило». Ослепительный огонь, пылавший внутри, был виден сквозь многочисленные пробоины от снарядов». Лишь после этого «Бисмарк» умер. «Когда он перевернулся вверх килем, — с гордостью писал один из спасшихся немецких моряков, — мы увидели, что подводная часть корпуса не повреждена торпедами».

Обратите внимание: англичане и по сей день не могут подсчитать, сколько их торпед попало в «Бисмарк», по меньшей мере — около 28. Но мощность взрывчатки в боевых отделениях английских торпед была такова, что, по свидетельству уцелевших моряков «Бисмарка», взрывы торпед «лишь сдирали с бортов линкора краску», — по словам Лена Дейтона

А 15 октября 1939 года немецкая подводная лодка U-47, проникнув на базу английского флота Скапа-Флоу, двумя торпедами попала во флагманский линкор английского флота «Ройял-Оук». Взрывами линкор был разломан на две части, опрокинулся и затонул вместе с 832 членами экипажа, среди которых был, кстати или некстати, и командующий английским флотом метрополии адмирал Блэнгроув, не обеспечивший охрану базы.

Причин такой разительной разницы применения торпедного оружия много. Скажем, «Бисмарк» был новейшим линкором, а «Ройял-Оук» — старым. Но что бы ни говорили, при анализе этих случаев выпирает и причина, которую можно считать главной: боевые части английских торпед и мин снаряжались просто тринитротолуолом, а немецких — смесью его с гексогеном, что повышало мощность взрыва в 1,5 раза. Взрыв от немецких мин и торпед проламывал более толстую броню и глубже проникал в заброневой объем корабля.

А что касается старых и новых кораблей, то следует сказать, что обоим новым, советским крейсерам КБФ водоизмещением 8600 т оторвало носы при прохождении над немецкими магнитными минами, крейсеру «Максим Горький» — 23 июня 1941 года, а крейсеру «Киров» — после войны. Правда, наши крейсера не затонули.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector