Белые карлики
Содержание:
- Глава 3. Астроликбез первого уровня
- Немного об эволюции звезд
- История вопроса
- Спектральная классификация
- Развитие темы
- Особенности охоты
- Ответы на вопросы
- Белые карлики в тесных двойных системах
- Типы карликовых светил
- Общие характеристики
- Истории и имена
- Характеристики
- История открытия
- Виды звезд в наблюдаемой Вселенной
- В конце жизни звёзды превращаются в белые карлики, нейтронные звёзды или чёрные дыры.
Глава 3. Астроликбез первого уровня
Природа создает белые карлики на последней стадии активного существования совсем других звезд. Поэтому я начну с кратких сведений о законах звездной эволюции, которые еще не раз будут расширяться и уточняться.
Все звезды загораются одинаково, но кончают жизнь по-разному. Рождение звезды происходит в результате гравитационного стягивания чисто газового (как это было в юной Вселенной) или газопылевого (в следующие космические эпохи) облака и последующего поджога термоядерного горения водорода в его центральной зоне. Минимальная температура, необходимая для воспламенения водорода, составляет около 3 млн градусов. Согласно модельным вычислениям, для достижения этого порога масса протозвезды должна превысить 0,075 массы Солнца. Максимальные массы новорожденных звезд исчисляются сотнями солнечных, но, согласно некоторым астрофизическим моделям, на заре мироздания они могли достигать и 1 млн.
В финале своего существования звезды претерпевают различные превращения. Иногда они взрываются без остатка, а иногда дают начало объектам иной природы, которые принято называть компактными. Это белые карлики, нейтронные звезды и черные дыры. Первые в среднем в 2 млн раз плотнее Солнца, вторые — где-то в 300 трлн раз. О плотности черных дыр говорить не приходится, поскольку они вообще не содержат вещества даже в самых экзотических формах и представляют собой сгустки поля тяготения, которое (по крайней мере, без учета квантовых эффектов) достигает бесконечных значений. Поэтому белые карлики — самые «рыхлые» из космических компактов, так сказать субкомпакты.
По происхождению белые карлики — тлеющие, но все еще весьма горячие остатки не особенно массивных нормальных звезд, успевших сжечь свое термоядерное топливо и потому обреченных на постепенное затухание. Самые легкие звезды перерабатывают водород в гелий и на этом останавливаются, а светила потяжелее в конце жизни производят на свет более тяжелые элементы. Если начальная масса звезды не больше шести-восьми солнечных масс, то в ее ядре после гелия образуются лишь углерод и кислород. Звезды потяжелее (до 10–11 солнечных масс), как считается, дополнительно вырабатывают неон и магний. Затем основной термоядерный синтез прекращается, и звезда вступает в последнюю стадию своей активной жизни. На этом этапе она дожигает оставшееся ядерное топливо и в процессе катаклизмических раздуваний и сжатий сбрасывает внешние слои. В конце концов от нее остается углеродно-кислородное ядро (возможно, с небольшим включением более тяжелых элементов), окруженное горячей газовой оболочкой. Это и есть типичный белый карлик. Существуют также белые карлики с чисто гелиевыми ядрами — это остатки самых легких звезд. Все сказанное справедливо только для звезд, не входящих в тесные пары — о них разговор особый.
Масса большинства белых карликов составляет от половины до 1,3 массы Солнца, а средний радиус не превышает 0,01 солнечного. Правда, есть и выдающиеся (в обе стороны) примеры. Масса самого легкого на сегодняшний день белого карлика, J0917+4638, равна 0,17 массы Солнца. Интересно, что в то же время он и самый большой, а потому и самый рыхлый: его радиус составляет 8% солнечного (в надлежащем месте книги я вернусь к этому вроде бы явному парадоксу). Самый тяжелый из известных белых карликов, RE J 0317–853, как считается, тянет на 1,4 солнечной массы, что близко к максимально возможной массе этих объектов.
Температура ядра новорожденного карлика оценивается приблизительно в 100–150 млн градусов по шкале Кельвина — или просто кельвинов. Конечно, оно остывает, но чрезвычайно медленно. Как показывают расчеты, чтобы его температура уменьшилась в 25 раз, то есть достигла 4 млн кельвинов, нужно без малого полтора миллиарда лет. Время, за которое белый карлик охладится до температуры окружающего пространства (точнее, до температуры реликтового излучения), измеряется — самое меньшее — сотнями миллиардов лет. Кстати, первые теоретические оценки скорости остывания белых карликов были сделаны британским астрофизиком Леоном Местелом еще в начале 1950-х гг. и с тех пор неоднократно уточнялись.
Немного об эволюции звезд
Ключевой параметр всех звезд – это масса. Она задает интенсивность всех происходящих в звезде процессов, так как от массы звезды зависит давление, плотность и, соответственно, температура вещества в ее недрах. А чем выше значения этих величин, тем выше вероятность каждого акта термоядерного синтеза, то есть он протекает с большей интенсивностью. Стабильность звезды поддерживается равновесием между силой ее гравитационного сжатия и силой давления, расталкивающей ее за счет энерговыделения в ходе ядерных реакций.
Масса же определяет и продолжительность стабильного существования звезды до исчерпания водорода как термоядерного горючего (этап «главной последовательности»), и ее дальнейшую судьбу. В конце этого периода своей жизни звезды в зависимости от массы испытывают те или иные изменения, итогом которых становится превращение их в объекты одного из трех типов: белые карлики, нейтронные звезды либо черные дыры. Нас будет интересовать первый вариант.
История вопроса
Белые карлики – звезды, привлекшие внимание астрономов в 1919. Впервые удалось открыть такое небесное тело ученому из Нидерландов Маанену
Для своего времени специалист сделал довольно нетипичное и неожиданное открытие. Увиденный им карлик был похож на звезду, но имел нестандартные маленькие размеры. Спектр, однако, был таков, словно бы это массивное и большое небесное тело.
Причины такого странного явления привлекали ученых довольно долгое время, поэтому было приложено немало усилий для изучения строения белых карликов. Прорыв совершился, когда высказали и доказали предположение обилия в атмосфере небесного тела разнообразных металлических структур.
Необходимо уточнить, что металлы в астрофизике – это всевозможные элементы, молекулы которых тяжелее водородных, гелиевых, а химический состав их более прогрессивен, нежели эти два соединения. Гелий, водород, как удалось установить ученым, в нашей вселенной распространены шире, нежели любые другие вещества. Отталкиваясь от этого, было решено все прочее обозначать металлами.
Спектральная классификация
Звезды — громадные раскаленные шары, состоящие из газа. То, какими мы видим их с Земли, зависит от множества параметров. Например, звезды в действительности не мерцают. Убедиться в этом очень легко: достаточно вспомнить Солнце. Эффект мерцания возникает из-за того, что свет, идущий от космических тел к нам, преодолевает межзвездную среду, полную пыли и газа. Другое дело — цвет. Он является следствием нагрева оболочек (в особенности фотосферы) до определенных температур. Истинный цвет может отличаться от видимого, но разница, как правило, невелика.
Сегодня во всем мире используется гарвардская спектральная классификация звезд. Она является температурной и основывается на виде и относительной интенсивности линий спектра. Каждому классу соответствуют звезды определенного цвета. Разработана классификация была в обсерватории Гарварда в 1890-1924 гг.
Развитие темы
Хотя впервые сильно отличающиеся размерами от Солнца белые карлики были замечены в двадцатых годах, только через половину века люди выявили, что наличие металлических структур в звездной атмосфере не является типичным явлением. Как выяснилось, при включении в атмосферу помимо двух самых распространенных веществ более тяжелых происходит их смещение в глубокие слои. Тяжелые вещества, оказавшись среди молекул гелия, водорода, со временем должны переместиться в ядро звезды.
Причин такого процесса удалось обнаружить несколько. Радиус белого карлика мал, такие звездные тела очень компактные – не зря они получили свое название. В среднем радиус сравним с земным, в то время как вес сходен с весом звезды, освещающей нашу планетарную систему. Такое соотношение габаритов и веса становится причиной исключительно большого гравитационного поверхностного ускорения. Следовательно, оседание тяжелых металлов в водородной и гелиевой атмосфере происходит всего лишь за несколько земных дней после попадания молекулы в общую газовую массу.
Особенности охоты
Ответы на вопросы
- Чем отличается белый карлик от нейтронной звезды? Вся эволюция звезды основывается на первоначальной ее массе, от этого параметра и будет зависть ее светимость, продолжительность жизни и во что она превратится в конце. Для звезды массой 0,5-1,44 солнечной, жизнь закончится тем, что звезда расширится и превратится в красного гиганта, который сбросив свои внешние оболочки образует планетарную туманность оставит после себя лишь одно ядро, состоящее из вырожденного газа. Это упрощенный механизм того, как образуется белый карлик. Если масса звезды больше 1,44 массы Солнца (так называемый предел Чандрасекара, при котором звезда может существовать как белый карлик. Если масса будет превышать его, то она станет нейтронной звездой.), то звезда израсходовав весь водород в ядре начинает синтез более тяжелых элементов, вплоть до железа. Дальнейший синтез элементов, которые тяжелее железа, невозможен т.к. требует больше энергии чем выделяется в процессе синтеза и ядро звезды коллапсирует в нейтронную звезду. Электроны срываются с орбит и падают в ядро, там сливаются с протонами и в итоге образуются нейтроны. Нейтронное вещество весит в сотни и миллионы раз больше чем любое другое.
- Отличие белого карлика и пульсара. Все те же самые отличия что и в случае с нейтронной звездой, только стоит учитывать, что пульсар (а это и есть нейтронная звезда) еще и очень быстро вращается, десятки раз в секунду, а период вращения белого карлика составляет, на примере звезды 40 Eri B, 5 часов 17 минут. Разница ощутима!
- Из-за чего светятся белые карлики? Так термоядерные реакции уже не происходят все имеющееся излучение это тепловая энергия, так почему они светятся? По сути он медленно остывает, как раскаленное железо, которое сперва ярко белое, а затем краснеет. Вырожденный газ очень хорошо проводит тепло из центра и он остывает на 1% за сотни миллионов лет. Со временем остывание замедляется и он может просуществовать триллионы лет.
- Во что превращаются белые карлики? Возраст Вселенной слишком мал, для того чтобы могли образоваться, так называемые, черные карлики, конечной стадия эволюции. Так что видимых подтверждений у нас пока нет. На основе расчетов его остывания мы знаем лишь одно, что их продолжительность жизни, имеет поистине огромную, превышающую возраст Вселенной (13,7 млрд. лет) и теоретически составляющую триллионы лет.
-
Существует ли белый карлик с сильным магнитным полем как у нейтронной звезды? Некоторые из них обладают мощными магнитными полями, гораздо сильнее, чем любые созданные нами на Земле. Например, сила магнитного поля на поверхности Земли составляет всего от 30 до 60 миллионных долей тесла, в то время как напряженность магнитного поля белого карлика может достигать 100 000 тесла.
Но нейтронная звезда, обладает поистине сильным магнитным полем – 10*11 Тл и называется магнетаром! На поверхности некоторых магнетаров могут образовываться толчки, которые формируют колебания в звезде. Эти колебания часто приводят к огромным выбросам гамма-излучения магнетаром. Так, например, магнетар SGR 1900+14, который находится на расстоянии на 20 000 световых лет, в созвездии Орла, взорвался 27 августа 1998 г. Мощная вспышка гамма излучения была настолько сильной, что заставила выключить аппаратуру космического аппарата NEAR Shoemaker в целях ее сохранения.
Научно-популярный фильм о героях нашей статьи
Белые карлики в тесных двойных системах
Карлики могут входить в состав двойных систем, звезды-компоненты которых сближены настолько, что обмениваются веществом. В этом случае массивный плотный карлик будет перетягивать на себя вещество компаньона.
Водород, попадающий от соседней звезды на горячую поверхность карлика, разогревается до температуры, при которой начинается термоядерный синтез. В этом случае наблюдается вспышка, называемая новой звездой.
Если же при падении водорода на карлик его масса превзойдет предел Чандрасекара, происходит коллапс, сопровождающийся взрывом сверхновой типа Ia. Наблюдение таких сверхновых в далеких галактиках представляет большой интерес, поскольку по яркости вспышек, имеющих одинаковые характеристики, устанавливают расстояние до галактик.
Типы карликовых светил
Стоит отметить, что все объекты класса обладают небольшим размером, но могут отличаться другими характеристиками. Поэтому звезды карлики поделили на типы и разновидности.
Звёзды в космосе
Звезды белые карлики
Между прочим, белый карлик это потухшая и остывающая звезда. Другими словами, тело, находящееся на конечном этапе эволюции. Несмотря на то, что по размеру они похожи с нашей планетой, масса примерно такая же, как солнечная. Причем данный тип относится к спектральному классу А.Как вы считаете, какая звезда превращается в белый карлик и чем отличаются белые карлики от обычных звезд?По сути, звёздное тело малой и средней величины может превращаться в данный тип. Но только на завершающей стадии своего жизненного цикла. Это, так называемые вырожденные звёзды. В них давление вырожденного газа оказывает сопротивление гравитации. Кстати, именно поэтому структура белых карликов отличается от остальных светил. Поскольку высокое давление оказывает прямое воздействие на атомы. Можно сказать, что при таких условиях возникает гравитационный коллапс. В результате формируется сильно сжатая и плотная структура из атомного ядра и электронов.Правда, давление вырожденного газа не позволяет коллапсу продолжаться. И таким образом происходит превращение объекта в белое карликовое светило. Но при условии, что его масса не более солнечной в 1,4 раза. Если же она больше, то образуется нейтронная звезда.
Белый карлик
Какие звезды называют желтыми карликами?
На самом деле, желтый карлик представляет собой тип звёздных тел главной последовательности, которые относятся к спектральному классу G. По оценке учёных, их масса может быть от 0,8 до 1,2 солнечных масс.После того, как в них сгорает весь водород, жёлтая карликовая звезда расширяется и превращается в красный гигант.
Солнце (жёлтый карлик)
Оранжевые карликовые светила
Еще один тип главной последовательности звёзд малого размера и спектрального класса К. Их масса колеблется от 0,5 до 0,8 массы Солнца, а длительность жизни выше нашего главного светила.Можно сказать, что оранжевые представители находятся где-то между жёлтыми и красными собратьями.
Красные карлики
Итак, звезда красный карлик представляет собой небольшое тело с невысоким значением массы. В результате для таких космических объектов характерны низкая температура и слабый уровень светимости. Собственно говоря, по этой причине они не видны с Земли без применения специальных приборов.На диаграмме Герцшпрунга-Рассела находятся в самом низу. Главным образом, они относятся к позднему спектральному классу, чаще всего к классу М.Что интересно, наша галактика Млечный Путь богата именно на красных карликовых звёзд. По оценке астрономов, на их долю приходится до 80% всех астрономических тел в пределах нашей галактической системы.
Проксима Центавра (красный карлик)
Коричневые представители
И наконец, коричневый карлик — звезда со слабой яркостью (класс Т). Поскольку при их формировании начальная масса небольшая. Из-за чего внутри них нет ядерных реакций. Они попросту не могут возникнуть. Как оказалось, коричневые светила являются очень холодными объектами.По данным учёных, в них протекают термоядерные реакции синтеза лёгких элементов. К примеру, лития, бора, бериллия. Однако тепловыделение небольшое, поэтому ядерные процессы заканчиваются. А само космическое тело довольно скоро остывает и превращается в объекты, похожие на планеты.
Корчневый карлик
Какие звезды карлики носят названия чёрные или мёртвые
В действительности, черный карлик — небольшое холодное светило, внутри которого отсутствуют какие-либо ядерные реакции. Либо потому что массы не хватило для возникновения этих процессов, либо в ядре сгорело всё топливо и они просто погасли. Во втором случае, их называют умершими или мёртвыми звёздными телами.
Чёрный карлик
Вдобавок, выделяют субкоричневые или коричневые субкарлики. По массе они уступают коричневым карликам. Более того, это совершенно холодные космические объекты.
Чаще всего их относят к планетам.
Общие характеристики
Спектр звезды класса M6V
Красные карлики довольно сильно отличаются от других звёзд. Масса красных карликов не превышает трети солнечной массы (нижний предел массы — 0,0767M☉, затем идут коричневые карлики). Температура фотосферы красного карлика может достигать 3500 К, что превышает температуру спирали лампы накаливания, поэтому, вопреки своему названию, красные карлики, аналогично лампам, испускают свет не красного, а скорее охристо-желтоватого оттенка. Звезды этого типа испускают очень мало света, иногда в 10 000 раз меньше Солнца. Из-за низкой скорости сгорания водорода красные карлики имеют очень большую продолжительность жизни — от десятков миллиардов до десятков триллионов лет (красный карлик с массой в 0,1 массы Солнца будет гореть 10 триллионов лет). В красных карликах невозможны термоядерные реакции с участием гелия, поэтому они не могут превратиться в красные гиганты. Со временем они постепенно сжимаются и всё больше нагреваются, пока не израсходуют весь запас водородного топлива, и постепенно превращаются в голубые карлики, а затем — в белые карлики с гелиевым ядром. Но с момента Большого взрыва прошло ещё недостаточно времени, чтобы красные карлики смогли сойти с главной последовательности.
Тот факт, что красные карлики остаются на главной последовательности, в то время как другие звезды сходят с неё, позволяет определять возраст звёздных скоплений путём нахождения массы, при которой звёзды вынуждены сойти с главной последовательности. Кроме того, тот факт, что на данный момент не найдено ни одного красного карлика вне главной последовательности, свидетельствует о том, что Вселенная имеет конечный возраст.
Спектральный класс | Радиус | Масса | Светимость | Температура | Типичные представители |
---|---|---|---|---|---|
R/R☉ | M/M☉ | L/L☉ | K | ||
M0 | 0,64 | 0,47 | 0,075 | 3850 | GJ 278C |
M1 | 0,49 | 0,49 | 0,035 | 3600 | GJ 229A |
M2 | 0,44 | 0,44 | 0,023 | 3400 | Лаланд 21185 |
M3 | 0,39 | 0,36 | 0,015 | 3250 | GJ 725A |
M4 | 0,26 | 0,20 | 0,0055 | 3100 | Звезда Барнарда |
M5 | 0,20 | 0,14 | 0,0022 | 2800 | GJ 866AB |
M6 | 0,15 | 0,10 | 0,0009 | 2600 | Вольф 359 |
M7 | 0,12 | 0,09 | 0,0006 | 2500 | Ван Бисбрук 8 |
M8 | 0,11 | 0,08 | 0,0003 | 2400 | Ван Бисбрук 9 |
M9 | 0,08 | 0,079 | 0,00015 | 2300 | LHS 2924 |
M9.5 | 0,08 | 0,075 | 0,0001 | 2250 | DENIS-P J0021.0–4244 |
Истории и имена
В 1785 в списке двойных звезд появилось тело, наблюдениями за которым занимался Гершель. Звезду назвали 40 Эридана B. Именно она считается первой увиденной человеком из категории белых карликов. В 1910 Расселл заметил, что этому небесному телу свойственен крайне низкий уровень свечения, хотя цветовая температура довольно высокая. Со временем было решено, что небесные тела такого класса необходимо выделять в отдельную категорию.
В 1844 Бессель, исследуя информацию, полученную при слежении за Проционом В, Сириусом В, решил, что обе они время от времени смещаются с прямой линии, а значит, там есть близкие спутники. Такое предположение научному сообществу показалось маловероятным, так как не удалось увидеть никакого спутника, в то время как отклонения могли бы объясниться только небесным телом, масса которого исключительно велика (аналогична Сириусу, Проциону).
В 1962 Кларк, работая с наиболее крупным телескопом из существовавших в тот момент, выявил вблизи Сириуса очень тусклое небесное тело. Именно его и назвали Сириусом В, тем самым спутником, который задолго до этого предположил Бессель. В 1896 исследования показали, что Процион также имеет спутника – он получил название Процион В. Следовательно, идеи Бесселя полностью подтвердились.
Характеристики
Белые карлики — тела, по массе, как правило, очень близкие к Солнцу. При этом их размер соответствует земному. Колоссальная плотность этих космических тел и происходящие в их недрах процессы необъяснимы с точки зрения классической физики. Тайны звезд помогла раскрыть квантовая механика.
Вещество белых карликов представляет собой электронно-ядерную плазму. Сконструировать его даже в условиях лаборатории практически невозможно. Поэтому многие характеристики таких объектов остаются непонятными.
Даже если изучать всю ночь звезды, обнаружить хотя бы один белый карлик без специальной аппаратуры не получится. Их светимость значительно меньше солнечной. По подсчетам ученых, белые карлики составляют примерно от 3 до 10% всех объектов Галактики. Однако на сегодняшний день найдены лишь те из них, которые расположены не дальше, чем на расстоянии 200-300 парсек от Земли.
Белые карлики продолжают эволюционировать. Сразу после образования они имеют высокую температуру поверхности, но быстро остывают. Через несколько десятков миллиардов лет после образования, согласно теории, белый карлик превращается в черного карлика — не излучающее видимый свет тело.
Белая, красная или синяя звезда для наблюдателя отличаются прежде всего цветом. Астроном смотрит глубже. Цвет для него сразу многое рассказывает о температуре, размерах и массе объекта. Голубая или светлая синяя звезда — гигантский раскаленный шар, по всем параметрам сильно опережающий Солнце. Белые светила, примеры которых описаны в статье, несколько меньше. Номера звезд в различных каталогах также многое сообщают профессионалам, но далеко не все. Большое количество сведений о жизни далеких космических объектов либо еще не получили объяснения, либо остаются даже не обнаруженными.
История открытия
Видимое движение Сириуса по небесной сфере
В 1844 году немецкий астроном и математик Фридрих Бессель при наблюдении Сириуса обнаружил небольшое отклонение звезды от прямолинейного движения, и сделал предположение о наличии у Сириуса невидимой массивной звезды-спутника.
Его предположение было подтверждено уже в 1862 году, когда американский астроном и телескопостроитель Альван Грэхэм Кларк, занимаясь юстировкой самого крупного в то время рефрактора, обнаружил возле Сириуса неяркую звезду, которую впоследствии окрестили Сириус Б.
Белый карлик Сириус Б имеет низкую светимость, а гравитационное поле воздействует на своего яркого компаньона довольно заметно, что свидетельствует о том, что у этой звезды крайне малый радиус при значительной массе. Так впервые был открыт вид объектов, названный белыми карликами. Вторым подобным объектом была звезда Маанена, находящаяся в созвездии Рыб.
Виды звезд в наблюдаемой Вселенной
Во Вселенной существует множество различных звезд. Большие и маленькие, горячие и холодные, заряженные и не заряженные. В этой статье мы назовем основные виды звезд, а также дадим подробную характеристику Жёлтым и Белым карликам.
- Жёлтый карлик. Жёлтый карлик – тип небольших звёзд главной последовательности, имеющих массу от 0,8 до 1,2 массы Солнца и температуру поверхности 5000–6000 K. Подробнее об этом типе звезд нем смотрите ниже.
- Красный гигант. Красный гигант – это крупная звезда красноватого или оранжевого цвета. Образование таких звезд возможно как на стадии звездообразования, так и на поздних стадиях их существования. Крупнейшие из гигантов превращаются в красных супергигантов. Звезда под названием Бетельгейзе из созвездия Орион – самый яркий пример красного супергиганта.
- Белый карлик. Белый карлик – это то, что остаётся от обычной звезды с массой, не превышающей 1,4 солнечной массы, после того, как она проходит стадию красного гиганта. Подробнее об этом типе звезд нем смотрите ниже.
- Красный карлик. Красные карлики – самые распространённые объекты звёздного типа во Вселенной. Оценка их численности варьируется в диапазоне от 70 до 90% от числа всех звёзд в галактике. Они довольно сильно отличаются от других звезд.
- Коричневый карлик. Коричневый карлик – субзвездные объекты (с массами в диапазоне примерно от 0,01 до 0,08 массы Солнца, или, соответственно, от 12,57 до 80,35 массы Юпитера и диаметром примерно равным диаметру Юпитера), в недрах которых, в отличие от звезд главной последовательности, не происходит реакции термоядерного синтеза c превращением водорода в гелий.
- Субкоричневые карлики. Субкоричневые карлики или коричневые субкарлики – холодные формирования, по массе лежащие ниже предела коричневых карликов. Масса их меньше примерно одной сотой массы Солнца или, соответственно, 12,57 массы Юпитера, нижний предел не определён. Их в большей мере принято считать планетами, хотя к окончательному заключению о том, что считать планетой, а что – субкоричневым карликом научное сообщество пока не пришло.
- Черный карлик. Черные карлики – остывшие и вследствие этого не излучающие в видимом диапазоне белые карлики. Представляет собой конечную стадию эволюции белых карликов. Массы черных карликов, подобно массам белых карликов, ограничиваются сверху 1,4 массами Солнца.
- Двойная звезда. Двойная звезда – это две гравитационно связанные звезды, обращающиеся вокруг общего центра масс.
- Новая звезда. Звезды, светимость которых внезапно увеличивается в 10 000 раз. Новая звезда представляет собой двойную систему, состоящую из белого карлика и звезды-компаньона, находящейся на главной последовательности. В таких системах газ со звезды постепенно перетекает на белый карлик и периодически там взрывается, вызывая вспышку светимости.
- Сверхновая звезда. Сверхновая звезда – это звезда, заканчивающая свою эволюцию в катастрофическом взрывном процессе. Вспышка при этом может быть на несколько порядков больше чем в случае новой звезды. Столь мощный взрыв есть следствие процессов, протекающих в звезде на последний стадии эволюции.
- Нейтронная звезда. Нейтронные звезды (НЗ) – это звездные образования с массами порядка 1,5 солнечных и размерами, заметно меньшими белых карликов, порядка 10-20 км в диаметре. Они состоят в основном из нейтральных субатомных частиц – нейтронов, плотно сжатых гравитационными силами. В нашей Галактике, по оценкам ученых, могут существовать от 100 млн до 1 млрд нейтронных звёзд, то есть где-то по одной на тысячу обычных звёзд.
- Пульсары. Пульсары – космические источники электромагнитных излучений, приходящих на Землю в виде периодических всплесков (импульсов). Согласно доминирующей астрофизической модели, пульсары представляют собой вращающиеся нейтронные звёзды с магнитным полем, которое наклонено к оси вращения. Когда Земля попадает в конус, образуемый этим излучением, то можно зафиксировать импульс излучения, повторяющийся через промежутки времени, равные периоду обращения звезды. Некоторые нейтронные звёзды совершают до 600 оборотов в секунду.
- Цефеиды. Цефеиды – класс пульсирующих переменных звёзд с довольно точной зависимостью период-светимость, названный в честь звезды Дельта Цефея. Одной из наиболее известных цефеид является Полярная звезда. Приведенный перечень основных видов (типов) звезд с их краткой характеристикой, разумеется, не исчерпывает всего возможного многообразия звезд во Вселенной.
В конце жизни звёзды превращаются в белые карлики, нейтронные звёзды или чёрные дыры.
Category:Коротко и ясно о самом интересном
4-1. Жизненный цикл звезды в зависимости от её массы (по blackholecam.org).
4-2. Туманность Улитка (ближайшая к нам планетарная туманность, 700 световых лет) в созвездии Водолея – красивейший «памятник» звезде типа нашего Солнца, погибшей десять тысяч лет назад (ESO).
4-3. Туманность Кошачий глаз (3000 световых лет от нас) в созвездии Дракона – ещё один вид завершающего этапа эволюции звезды, похожей на наше Солнце, после того, как у неё закончится термоядерное топливо (NASA, ESA, and The Hubble Heritage Team – STScI / AURA).
4-4. Туманность Эскимос (3 тысячи световых лет от нас) в созвездии Близнецов. 10 тысяч лет назад на месте этой туманности была звезда, похожая на наше Солнце. Как и большинство фотографий космических объектов, это изображение сделано совмещением данных, полученных оптическими, инфракрасными и рентгеновскими телескопами в искусственных цветах. Но каждая деталь этих завораживающих видов, хоть и не будет видна глазом даже с близкого расстояния, существует на самом деле (Andrew Fruchter – STScI et al., WFPC2, HST, NASA).
4-5. Туманность Гомункул (8 тысяч световых лет от нас) появилась на небе в результате выброса вещества из звезды-сверхгиганта Эта Киля – самой большой из известных науке звёзд (120 масс Солнца и 240 его диаметров). В центре изображения видно фиолетовое свечение — отражение света Эты Киля. В течение нескольких миллионов лет она может взорваться как яркая сверхновая (N. Smith, J. A. Morse – U. Colorado et al., NASA).
Итак, жизнь звезды имеет начало и конец. И в конце её жизни, после того, как иссякнет источник энергии, от звезды остаётся какой-то очень небольшой по размеру остаток: белый карлик, нейтронная звезда или чёрная дыра.
Белый карлик получается из звезды типа нашего Солнца, причём без всякого взрыва. Это объект размером с Землю и массой, как у Солнца. Его плотность настолько высока, что электронные оболочки атомов разрушаются, и вещество становится электронно-ядерной плазмой. Один из первых известных белых карликов открыли, изучая самую яркую звезду ночного неба – Сириус. Оказалось, что его спутник белый, маленький и очень тяжёлый.
Если масса звезды больше солнечной в несколько раз, мощная гравитация превратит электроны и протоны в нейтроны, и сжатие пойдёт ещё дальше. При этом образуется нейтронная звезда – очень интересный объект со сверхвысокой температурой и плотностью, сверхмощными магнитными и гравитационными полями. Только представьте себе звезду с массой Солнца и радиусом всего 10 км, которая делает оборот вокруг своей оси за одну тысячную секунды!
Самые массивные звёзды превращаются в чёрные дыры. Гравитационное притяжение чёрной дыры настолько велико, что покинуть её не могут даже фотоны. У нас пока нет точной теории, полностью описывающей внутреннее строение чёрных дыр.
Это – глава из стенгазеты, выпущенной благотворительным проектом «Коротко и ясно о самом интересном». Нажмите на миниатюру газеты ниже и читайте остальные статьи по интересующей вас тематике. Спасибо!
Материал выпуска любезно предоставил Сергей Борисович Попов – астрофизик, доктор физико-математических наук, профессор Российской академии наук, ведущий научный сотрудник Государственного астрономического института им. Штернберга Московского государственного университета, лауреат нескольких престижных премий в области науки и просвещения. Надеемся, что знакомство с выпуском будет полезно и школьникам, и родителям, и учителям – особенно сейчас, когда астрономия снова вошла в список обязательных школьных предметов (приказ №506 Минобрнауки от 7 июня 2017 года).