Из чего состоит наша вселенная?

Содержание:

Содержание

Советы по тактике игре на T34

Не стоит забывать про нашу скорострельность, ибо без всяких «бонусов» наш танк перестреляют в любом случае. Поэтому не стоит перестреливаться в чистом поле. Играя на T34, нужно хорошо знать рельеф и различные укрытия на данной карте, ибо укрытия наше все. Наш танк является танком поддержки и расположен во второй линии.

Так же не стоит помнить про золотое правило – «Убитый друг, лучший друг», ибо нет ничего лучше персонального укрытия, которое можно еще и двигать по своему усмотрению. Башня у нас крепкая и для многих не пробиваемая, поэтому играть через башню – Must Have.

Так как дальность обзора у нашего танка маленькая, необходимо брать во взвод товарища на среднем танке (Т-44), который подсветит вам врагов, и вы спокойно нанесете урон.

Игры про ниндзя на ПК

Полезные сервисы:

Как вырастить имбирь на даче в открытом грунте

Ссылки

Изучение комет

Люди всегда проявляли особый интерес к кометам. Их необычный вид и неожиданность появления служили в течение многих веков источником всевозможных суеверий. Древние связывали появление в небе этих космических тел со светящимся хвостом с предстоящими бедами и наступлением тяжёлых времён.

Появление кометы Галлея в 1066 году. Фрагмент гобелена из Байё, ок. 1070 года

В эпоху Возрождения в немалой степени благодаря Тихо Браге кометы получили статус небесных тел. В 1814 году Лагранж выдвинул гипотезу, что кометы произошли в результате извержений и взрывов на планетах, в XX веке эту гипотезу развивал С. К. Всехсвятский. Лаплас же считал, что кометы происходят из межзвездного пространства.

Исчерпывающее представление о кометах астрономы получили благодаря успешным «визитам» в 1986 г. к комете Галлея космических аппаратов «Вега-1» и «Вега-2» и европейского «Джотто». Многочисленные приборы, установленные на этих аппаратах, передали на Землю изображения ядра кометы и разнообразные сведения о её оболочке. Оказалось, что ядро кометы Галлея состоит в основном из обычного льда (с небольшими включениями углекислых и метановых льдов), а также пылевых частиц. Именно они образуют оболочку кометы, а с приближением её к Солнцу часть из них — под давлением солнечных лучей и солнечного ветра — переходит в хвост.

Размеры ядра кометы Галлея, как правильно рассчитали учёные, равны нескольким километрам: 14 — в длину, 7,5 — в поперечном направлении.

Ядро кометы Галлея имеет неправильную форму и вращается вокруг оси, которая, как предполагал ещё немецкий астроном Фридрих Бессель (1784—1846), почти перпендикулярна плоскости орбиты кометы. Период вращения оказался равен 53 часам — что опять-таки хорошо согласовалось с вычислениями астрономов.

В 2005 космический аппарат НАСА «Дип Импакт» сбросил на комету Темпеля 1 зонд и передал изображения её поверхности.

В России

Сведения о кометах появляются уже в древнерусском летописании в Повести временных лет

Летописцы обращали на появление комет особое внимание, поскольку их считали предвестницами несчастий — войны, мора и т. д. Однако какого-то особого названия для комет в языке древней Руси не существовало, поскольку их считали движущимися хвостатыми звездами

В 1066 году, когда описание кометы впервые попало на страницы летописей, астрономический объект именовался «звезда велика; звезда привелика, луце имуши акы кровавы, въсходящи с вечера по заходе солнецьном; звезда образ копииныи; звезда… испущающе луча, еюже прозываху блистаньницю».

Слово «комета» проникает в русский язык вместе с переводами европейских сочинений о кометах. Его наиболее раннее упоминание встречается в сборнике «Бисер златый» («Луцидариус», лат. Lucidarius), представляющем собой нечто вроде энциклопедии, рассказывающей о мироустройстве. «Луцидариус» был переведен с немецкого языка в начале XVI века. Поскольку слово было новым для русских читателей, переводчик был вынужден пояснять его привычным наименованием «звезда»: «звезда комита дает блистание от себе яко луч». Однако прочно в русский язык понятие «комета» вошло в середине 1660-х годов, когда в небе над Европой действительно появлялись кометы. Это событие вызвало массовый интерес к явлению. Из переводных сочинений русский читатель узнавал, что кометы совсем не похожи на звезды. Отношение же к появлению небесных тел как к знамениям сохранялось как в России, так и в Европе вплоть до начала XVIII века, когда появились первые сочинения, отрицающие «чудесную» природу комет.

Освоение европейских научных знаний о кометах позволило русским учёным внести собственный вклад в их изучение. Во второй половине XIX века астроном Фёдор Бредихин (1831—1904) построил полную теорию природы комет, происхождения кометных хвостов и причудливого разнообразия их форм.

Взаимодействие регионального отделения «ЮНАРМИИ»

Когда и как правильно пересаживать клубнику

«Мобильность и ударные возможности»: чем уникален новый российский авиадесантируемый бронеавтомобиль «Тайфун-ВДВ»

Чем займутся Роман Полански и Лина Хиди

Ссылки

Гравитационные силы: определение

Первая количественная теория гравитации, основанная на наблюдениях движения планет, была сформулирована Исааком Ньютоном в 1687 году в его знаменитых «Началах натуральной философии». Он писал, что силы притяжения, которые действуют на Солнце и планеты, зависят от количества вещества, которое они содержат. Они распространяются на большие расстояния и всегда уменьшаются как величины, обратные квадрату расстояния. Как же можно вычислить эти гравитационные силы? Формула для силы F между двумя объектами с массами m1 и m2, находящимися на расстоянии r, такова:

F=Gm1m2/r2,где G — константа пропорциональности, гравитационная постоянная.

Очень большая структура

Уже в начале 20 в. стало известно, что звезды группируются в звездные скопления, которые, в свою очередь, образуют галактики. Позже были обнаружены скопления и сверхскопления галактик.

Изучая распределение звезд и звездных скоплений по небесной сфере, астрономы давно обнаружили, что оно неоднородно.

Так, почти все близкие шаровые скопления группировались в области с центром в созвездии Стрельца, а плотность «звездного населения» нашей Галактики увеличивалась в плоскости ее диска и по мере приближения к ядру.

Но в больших масштабах — порядка 1 млрд световых лет — оказалось, что Вселенная почти однородна, и новых уровней космической иерархии, открытия которых все ожидали, не существует.

Причины войны

Навигация

На других языках

  • Afrikaans
  • Azərbaycanca
  • Български
  • Bosanski
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • English
  • Esperanto
  • Español
  • Eesti
  • فارسی
  • Suomi
  • Français
  • Galego
  • עברית
  • Hrvatski
  • Magyar
  • Հայերեն
  • Bahasa Indonesia
  • Italiano
  • 日本語
  • ქართული
  • Kurdî
  • Limburgs
  • Lietuvių
  • Nederlands
  • Norsk
  • Polski
  • Português
  • Simple English
  • Slovenčina
  • Slovenščina
  • Српски / srpski
  • Svenska
  • తెలుగు
  • Türkçe
  • Українська
  • اردو
  • 中文

Гравитация

В возрасте 23 лет Исаак Ньютон уже свободно владел базовыми методами дифференциального и интегрального исчислений. Он также изобрел телескоп-рефлектор, который использовал для наблюдения за кометой. И он дал нам понятие гравитации. Это был первый шаг к разгадке тайн нашей необъятной и загадочной Вселенной.

Напомним, что законы Ньютона заключаются в следующем:

  1. Движущийся объект будет оставаться в движении, а объект в состоянии покоя будет оставаться в состоянии покоя, до тех по, пока на них не действует внешняя сила.

2. Сила = масса * ускорение.

3. Для каждого действия существует равное и противоположное противодействие.

Эти первые законы физики породили промышленную революцию и, таким образом, наступила современная эпоха. Тем не менее, было несколько других важных игроков.

Стационарная Вселенная

Первый существенный шаг на пути к разработке современной модели Вселенной совершил Альберт Эйнштейн. Свою модель стационарной Вселенной знаменитый физик ввёл в 1917 году. Эта модель была основана на общей теории относительности, разработанной им же годом ранее. Согласно его модели, Вселенная является бесконечной во времени и конечной в пространстве. Но ведь, как отмечалось ранее, согласно Ньютону Вселенная с конечным размером должна сколлапсироваться. Для этого Эйнштейн ввёл космологическую постоянную, которая компенсировала гравитационное притяжение далёких объектов.

Как бы это парадоксально не звучало, саму конечность Вселенной Эйнштейн ничем не ограничивал. По его мнению, Вселенная представляет собой замкнутую оболочку гиперсферы. Аналогией служит поверхность обычной трёхмерной сферы, к примеру – глобуса или Земли. Сколько бы путешественник ни путешествовал по Земле, он никогда не достигнет её края. Однако это вовсе не означает, что Земля бесконечна. Путешественник просто-напросто будет возвращаться к тому месту, откуда начал свой путь.

Крупномасштабная структура Вселенной

Основная статья: Крупномасштабная структура Вселенной

Уже в начале XX века было известно, что звёзды группируются в звёздные скопления, которые, в свою очередь, образуют галактики. Позже были найдены скопления галактик и сверхскопления галактик. Сверхскопление — самый большой тип объединения галактик, включает в себя тысячи галактик. Форма таких скоплений может быть различна: от цепочки, такой как цепочка Маркаряна, до стен, как великая стена Слоуна. Разумно было бы предположить, что эта иерархия распространяется дальше на сколь угодно много уровней, но в 1990-е Маргарет Геллер и Джон Хукра выяснили, что на масштабах порядка 300 мегапарсек Вселенная практически однородна и представляет собой совокупность нитевидных скоплений галактик, разделённых областями, в которых практически нет светящейся материи. Эти области (пустоты, войды, англ. voids) имеют размер порядка сотни мегапарсек.

Нити и пустоты могут образовывать протяжённые относительно плоские локальные структуры, которые получили название «стен». Первым таким наблюдаемым сверхмасштабным объектом стала Великая Стена CfA2, находящаяся в 200 миллионах световых лет и имеющая размер около 500 млн св. лет и толщину всего 15 млн св. лет. Последними являются открытая в ноябре 2012 года Громадная группа квазаров, имеющая размер 4 млрд св. лет и открытая в ноябре 2013 года Великая стена Геркулес-Северная Корона размером 10 млрд св. лет.

Средние века и Новое время

После крушения Римской империи и распространения христианства, Европа почти на тысячелетие погрузилась в Темные века – развитие естественных наук, в том числе и астрономии, практически остановилось. Европейцы черпали информацию об устройстве и законах Вселенной из библейских текстов, немногочисленные астрономы твердо придерживались геоцентрической системы Птолемея, небывалой популярностью пользовалась астрология. Реальное изучение учеными Вселенной началось только в эпоху Возрождения.

В конце XV столетия кардиналом Николаем Кузанским была выдвинута смелая идея об универсальности мироздания и бесконечности глубин Вселенной. Уже к XVI веку стало понятно, что взгляды Птолемея ошибочны, и без принятия новой парадигмы дальнейшее развитие науки немыслимо. Поломать старую модель решился польский математик и астроном Николай Коперник, предложивший гелиоцентрическую модель Солнечной системы.

Гелиоцентрическая модель, предложенная польским священником и астрономом Коперником

С современной точки зрения, его концепция была несовершенной. У Коперника движение планет обеспечивалось вращением небесных сфер, к которым они крепились. Сами орбиты имели круговую форму, а на границе мира находилась сфера с неподвижными звездами. Однако, поместив Солнце в центр системы, польский ученый, без сомнения, совершил настоящую революцию. Историю астрономии можно разделить на две большие части: древнейший период и изучение Вселенной от Коперника до наших дней.

В 1608 году итальянский ученый Галилей изобрел первый в мире телескоп, который дал огромный толчок развитию наблюдательной астрономии. Теперь ученые могли созерцать глубины Вселенной. Оказалось, что Млечный путь состоит из миллиардов звезд, Солнце имеет пятна, Луна – горы, а вокруг Юпитера вращаются спутники. Появление телескопа вызвало настоящий бум оптических наблюдений за чудесами Вселенной.

В середине XVI века датский ученый Тихо Браге первым начал регулярные астрономические наблюдения. Он доказал космическое происхождение комет, опровергнув тем самым идею Коперника о небесных сферах. В начале XVII столетия Иоганн Кеплер разгадал тайны движения планет, сформулировав свои знаменитые законы. В это же время были открыты туманности Андромеды и Ориона, кольца Сатурна, составлена первая карта лунной поверхности.

В 1687 году Исааком Ньютоном был сформулирован закон всемирного тяготения, объясняющий взаимодействие всех составляющих Вселенной. Он позволил увидеть скрытый смысл законов Кеплера, которые, по сути, были выведены эмпирическим путем. Принципы, открытые Ньютоном, позволили ученым по-новому взглянуть на пространство Вселенной.

XVIII столетие стало периодом бурного развития астрономии, значительно расширившим границы известной Вселенной. В 1785 году Кант выдвинул блестящую идею, что Млечный путь – это огромное звездное скопление, собранное воедино гравитацией.

В это время на «карте Вселенной» появлялись новые небесные тела, совершенствовались телескопы.

В XIX веке инструменты ученых стали более точными, появилась фотографическая астрономия. Спектральный анализ, появившийся в середине столетия, привел к настоящей революции в наблюдательной астрономии – теперь темой для исследований стал химический состав объектов. Был открыт пояс астероидов, измерена скорость света.

Уменьшая масштабы

В качестве итога мы ещё больше увеличимся в размерах. Теперь мы можем разместить в кулаке целые войды и стены. Так мы окажемся в довольно небольшом пузыре, из которого невозможно выбраться. Мало того, что расстояние до объектов на краю пузыря будет увеличиваться по мере их приближения, так ещё и сам край будет бесконечно смещаться. В этом и заключается вся суть размера наблюдаемой Вселенной.

Какой бы Вселенная не была большой, для наблюдателя она всегда останется ограниченным пузырём. Наблюдатель всегда будет в центре этого пузыря, фактически он и есть его центр. Пытаясь добраться до какого-либо объекта на краю пузыря, наблюдатель будет смещать его центр. По мере приближения к объекту, этот объект всё дальше будет отходить от края пузыря и в тоже время видоизменяться. К примеру – от бесформенного водородного облачка он превратится в полноценную галактику или дальше галактическое скопление. Ко всему прочему, путь до этого объекта будет увеличиваться по мере приближения к нему, так как будет меняться само окружающее пространство. Добравшись до этого объекта, мы лишь сместим его с края пузыря в центр. На краю Вселенной всё также будет мерцать реликтовое излучение.

Если предположить, что Вселенная и дальше будет расширяться ускоренно, то находясь в центре пузыря и мотая время на миллиарды, триллионы и даже более высокие порядки лет вперёд, мы заметим ещё более интересную картину. Хотя наш пузырь будет также увеличиваться в размерах, его видоизменяющиеся составляющие будут отдаляться от нас ещё быстрее, покидая край этого пузыря, пока каждая частица Вселенной не будет разрозненно блуждать в своём одиноком пузыре без возможности взаимодействовать с другими частицами.

Итак, современная наука не располагает сведениями о том, каковы реальные размеры Вселенной и имеет ли она границы. Но мы точно знаем о том, что наблюдаемая Вселенная имеет видимую и истинную границу, называемую соответственно радиусом Хаббла (13,75 млрд св. лет) и радиусом частиц (45,7 млрд. световых лет). Эти границы полностью зависят от положения наблюдателя в пространстве и расширяются со временем. Если радиус Хаббла расширяется строго со скоростью света, то расширение горизонта частиц носит ускоренный характер. Вопрос о том, будет ли его ускорение горизонта частиц продолжаться дальше и не сменится ли на сжатие, остаётся открытым.

Дальнейшее развитие космологии

По мере того, как учёные пытались решить этот вопрос, были открыты многие другие важнейшие составляющие Вселенной и разработаны различные её модели. Так в 1948 году Георгий Гамов ввёл гипотезу «о горячей Вселенной», которая в последствие превратится в теорию Большого взрыва. Открытие в 1965 году реликтового излучения подтвердило его догадки. Теперь астрономы могли наблюдать свет, дошедший с того момента, когда Вселенная стала прозрачна.

Тёмная материя, предсказанная в 1932 году Фрицом Цвикки, получила своё подтверждение в 1975 году. Тёмная материя фактически объясняет само существование галактик, галактических скоплений и самой Вселенской структуры в целом. Так учёные узнали, что большая часть массы Вселенной и вовсе невидима.

Из чего состоит Вселенная

Наконец, в 1998 году в ходе исследования расстояния до сверхновых типа Ia было открыто, что Вселенная расширяется с ускорением. Этот очередной поворотный момент в науке породил современное понимание о природе Вселенной. Введённый Эйнштейном и опровергнутый Фридманом космологический коэффициент снова нашёл своё место в модели Вселенной. Наличие космологического коэффициента (космологической постоянной) объясняет её ускоренное расширение. Для объяснения наличия космологической постоянной было введено понятия тёмной энергии – гипотетическое поле, содержащее большую часть массы Вселенной.

Как появилась Вселенная кратко. Эпохальный период становления

1. Эпоха сингулярности (планковская). Ее принято считать первичной, в качестве раннего эволюционного периода Вселенной. Материя была сосредоточена в одной точке, имеющей свою температуру и бесконечную плотность. Ученые утверждают, что эта эпоха характерна для доминирования квантовых эффектов, принадлежащих гравитационному взаимодействию над физическими, причем ни одна физическая сила из всех существовавших в те далекие времена по своей силе не была идентична гравитации, то есть не была ей равна. Время продолжительности планковской эры сосредотачивается в интервале от 0 до 10-43 секунды. Она получила такое название по причине того, что полноценно измерить ее протяженность смогло лишь планковское время. Этот временной интервал считается очень нестабильным, что в свою очередь тесным образом связано с экстремальной температурой и безграничной плотностью материи. Следом за эпохой сингулярности произошел период расширения, а вместе с ним и охлаждения, приведшие к формированию основных физических сил.

Потери обеих воюющих сторон

Нужно отметить, что разные источники а также разные историки называют часто цифры потерь, которые не сходятся с другими. Генерал Ротмистров в свое время утверждал, что с обеих сторон в течение дня, во время танковых боев под Прохоровкой было выведено из строя больше 700 боевых машин. После завершения танковой битвы Сталину докладывали о том, что за 2 дня боев один танковый корпус потерял больше половины личного состава боевых машин, а второй корпус потерял приблизительно 30% танков в ходе сражений.

Что касается человеческих потерь, то со стороны СССР за два дня танковых боев, которые были самыми жестокими, было потеряно практически 4 тыс. человек убитыми, а также пропавшими без вести. А с другой стороны фронта корпусы советских войск потеряли почти 5 тыс. человек убитыми и пропавшими без вести.

Эпизод во время боя

Немецкий федеральный военный архив сообщал о том, что после сражения под Прохоровкой Вермахт потерял приблизительно 70 танков и 1 тыс. человек убитыми. Такая разница между человеческими потерями и потерями танков объясняется тем, что немецкая сторона имела более модернизированные и мощные боевые машины, а также немецкая разведка постоянно сообщала своему командованию о том, что именно на этом участке фронта советские войска будут предпринимать танковую атаку.

Спорные[править]

Когда хочешь одурачить весь мир — говори правду.

Жизнь научила меня много прощать, но еще больше — искать прощения.

Берегитесь всегда строить воздушные замки, эти постройки легче всех других возводятся, но тяжелее всего разрушаются.

Глупость — дар Божий, но не следует им злоупотреблять.

Дружба между мужчиной и женщиной очень слабеет при наступлении ночи.

Сельдь могла бы стать деликатесом, если бы не была такой обыденной.

Свобода — это роскошь, которую не каждый может себе позволить.

Политикаправить

Отношение государства к учителю — это государственная политика, которая свидетельствует либо о силе государства, либо о его слабости.

За всякое порученное дело должен отвечать один и только один человек.

Политика есть искусство приспособляться к обстоятельствам и извлекать пользу из всего, даже из того, что претит.

Фраза: «В принципе я согласен» — означает, что вы отнюдь не намерены этого допустить.

Все мы — народ, и правительство — тоже.

Правительство не должно колебаться. Раз выбрав дорогу, оно должно, не оглядываясь направо и налево, идти до конца.

Даже победоносная война — это зло, которое должно быть предотвращено мудростью народов.

Горе тому государственному деятелю, который не позаботится найти такое основание для войны, которое и после войны еще сохранит свое значение.

Сильный всегда прав.

Германияправить

С плохими законами и хорошими чиновниками вполне можно править страной. Но если чиновники плохи, не помогут и самые лучшие законы.

Поздравьте меня — комедия кончилась… — во время ухода с поста канцлера

Вы не знаете этой публики! Наконец, еврей Ротшильд… это, я вам скажу, бесподобная скотина. Ради спекуляций на бирже он готов похоронить всю Европу, а виноват… я?

Россияправить

Никогда не верьте русским, ибо русские не верят даже самим себе. — Сказано перед началом Берлинского конгресса 1878 года

Орбита Нептуна

Обозримая Вселенная

Прежде чем начать рассуждения о том, что находится за пределами Вселенной, необходимо понять, где эти самые пределы. Естественно, узнать о настоящих границах космического пространства мы не можем, но точно знаем, где заканчивается обозримая часть Вселенной – Метагалактика.

Наблюдаемый космос – это пространство, из которого наши технологии способны регистрировать рассеяние реликтового излучения. Те области, где оно заканчивается, и принято считать за границы обозримого космоса. Реликтовое излучение – это энергия, высвободившаяся во время Большого взрыва и распространяющаяся по Вселенной до сих пор. Примерный радиус Метагалактики составляет 46 миллиардов световых лет.

Обозримая Вселенная

Однако насчет обозримой Вселенной у ученых есть два противоположных мнения. Одни считают, что за пределами Метагалактики есть и другие системы, а мы наблюдаем лишь малую часть необъятного космоса. Другое мнение говорит о том, что это и есть вся Вселенная, и за ее пределами уже ничего нет.

Помимо Метагалактики, есть такое понятие, как область Хаббла. Так называют часть обозримого космоса, которую мы можем увидеть с помощью своих технологий. Она составляет примерно 13,8 миллиарда световых лет. Так как возраст Вселенной составляет примерно столько же, свет из ее более далеких областей до нас еще попросту не дошел. Область Хаббла рано или поздно расширится, увеличив количество наблюдаемых нами звездных систем.

Словарное толкование

В словарях дается большое количество значений слова «вал», которые выглядят следующим образом:

  • Насыпь из земли или грунта, которая отличается некоторой протяженностью, ограда, которая используется как укрепление или фортификационное сооружение. Пример, «При создании крепости решили обнести ее мощным земляным валом, снабженным на подступах глубоким рвом».
  • Морская волна, имеющая большую высоту. Пример: «Буря нарастала, и крутой, пенистый, зеленый вал волны полностью накрыл маленькую лодочку».
  • В экономике – обозначение общего объема продукции, произведенной за определенный период. Пример: «На собрании было решено отказаться от выполнения выгодных по валу работ в ущерб тем, которые являются необходимыми».
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector