Галактика млечный путь

Содержание:

Содержание

Новая Зеландия. Регион Отаго: Горы со звездами и «золотая лихорадка»

Отаго является юго-восточным регионом на Южном острове Новой Зеландии, которая состоит из двух больших островов ‒ Северного и Южного. Южнее Отаго ‒ только Антарктида.

В Отаго много гор со снежными вершинами, горных озер, ледников, а также пляжи, там даже живут собственные пингвины! Административным центром региона является город Данедин, а всего в Отаго живет 230 тысяч жителей.

Коренные жители ‒ представители народности маори. Первые европейские поселенцы прибыли в Отаго в 1848 году, основав Данедин.

В Отаго производят известное новозеландское вино ‒ особенно популярно белое сухое, оно активно экспортируется и является известным в мире.

На флаге синее ‒ это небо, а желтым цветом обозначены горы.

Горы именно желтые, так как символизируют золото и период «золотой лихорадки» в Отаго в 1860-х годах. Синий цвет также связывают с синим цветом флага Шотландии, поскольку первыми еврейскими поселенцами в Отаго были именно шотландцы.

Две восьмиконечные звезды взяты из бывшего герба Отаго и также символизируют солнце, которое сияет над озерами и горами Отаго.

Надо заметить, что флаг Отаго менялся часто, но был сине-желтым. И вот в 2004 году решили провести конкурс, и из нескольких сотен претендентов выбрали эскиз Грегора Маккалая. Кампанию за постоянный флаг вел руководитель провинции Невилл Питт.

Не все регионы Новой Зеландии имеют собственные флаги, а вот Отаго ‒ имеет, да еще и сине-желтый!

БОЛЬШЕ ПО ТЕМЕ:

Юные десантники ЮВПК «Патриот России» «Союза десантников Удмуртии» участвуют в Республиканской спартакиаде «Гвардия» на Кубок имени М.Т. Калашникова

29 апреля на спортивно-уличном комплеке МАУ СКК «Прогресс» (г. Глазов) прошел первый тур Муниципального этапа Республиканской спартакиады «Гвардия» на Кубок имени М.Т. Калашникова среди юнармейских, кадетских отрядов и объединений города Глазов. В первом этапе «Силовое многоборье» приняли участие наши курсанты-десантники ЮВПК «Патриот России» и Юнармейцы МБОУ СОШ №17. В мероприятии приняли участие 35 учащихся от 13 до 16 лет.

Достойно показали себя юные гвардейцы клуба:

— 1 место в упражнении «Подтягивание на турнике из виса на высокой перекладине» занял Цыганов Владимир,

— 2 место в упражнении «Подъем туловища из положения лёжа на спине» — Цыганов Владимир,

— 3 место в упражнении «Рывок гири весом 16 кг.» — Павел Чучкалов,

— 3 место в упражнении «Подъем туловища из положения лёжа на спине» — Иван Шилов.

Современные данные

Сириус входит в скопление звёзд «зимний треугольник» со звёздами Альфа Ориона (Бетельгейзе) и Альфа Малого Пса (Процион). Угловое расстояние Сириуса от Полярной звезды составляет 106 градусов. Сегодня достоверно известно, что расстояние от Земли до Сириуса составляет 8,58 светового года, и это пятая по удалённости от Солнца звезда. В диаметре Сириус больше нашего Солнца в 1,71 раза и тяжелее его в 2,02 раза. Температура этой горячей белой звезды – 10 500 градусов Кельвина, а сияние в 1,47 m делает его самой яркой звездой созвездия Большого Пса. И он летит к нашей Солнечной системе со скоростью 7,6 км/сек.

Субмарина «Призрак» (1999)

Расположение Солнечной системы в Млечном Пути

Земля отдалена от галактического центра на 25000 световых лет и на столько же от края. Если представлять галактику как гигантскую музыкальную пластинку, то мы располагаемся на полдороге между центральной частью и краем. Если конкретнее, то занимаем местечко в рукаве Ориона между двумя главными рукавами. Он простирается на 3500 световых лет в диаметре и вытягивается на 10000 световых лет.

Положение Солнечной системы в Млечном Пути

Видно, что галактика делит небеса на два полушария. Это говорит о том, что мы расположены близко к галактической плоскости. У Млечного Пути низкая поверхностная яркость из-за обилия пыли и газа, скрывающих диск. Это мешает не только рассмотреть центральную часть, но и заглянуть на другую сторону.

Система тратит 250 миллионов лет на то, чтобы обойти весь орбитальный путь – «космический год». В последний проход по Земле бродили динозавры. А что будет дальше? Может люди вообще вымрут или их заменит новый вид?

В общем, мы проживаем в огромном и удивительном месте. Новые знания заставляют привыкать к тому, что Вселенная намного больше всех предположений. Теперь вы знаете, где находится Земля в Млечном Пути.

Вращение Млечного Пути

Масса Млечного Пути

Карта Млечного Пути

Центр Млечного Пути

Сколько звезд в Млечном Пути?

Вся информация о Млечном Пути

Тест: Пять признаков весеннего охлаждения

Неполная разборка

После неполной разборки устройство можно поместить в транспортировочный кейс. Обратная сборка займет от 30 до 60 секунд в зависимости от сноровки владельца.

Для неполной разборки необходимо:

  1. нажать защелку магазина и отделить магазин;
  2. утопить защелку глушителя и отделить его;
  3. отжать фиксатор сепаратора, отделить эту часть устройства;
  4. убрать пружину сепаратора;
  5. крышку ствола убрать, утопив фиксатор этой части;
  6. подать возвратный механизм назад и снять;
  7. отвести ударник максимально назад и снять его таким образом;
  8. снять раму затвора и сам затвор, также оттянув максимально назад;
  9. утопить защелку и снять цевье;
  10. последней снимается трубка – поворачивается по ходу стрелки часов до щелчка.

Если необходимо собрать изделие, производятся обратные действия.

Место Солнца в галактике

В окрестностях Солнца удаётся проследить участки двух спиральных ветвей, удалённых от нас примерно на 3 тыс. световых лет. По созвездиям, где обнаруживаются эти участки, их называют рукавом Стрельца и рукавом Персея. Солнце находится почти посередине между этими спиральными ветвями. Правда, сравнительно близко (по галактическим меркам) от нас, в созвездии Ориона, проходит ещё одна, не столь явно выраженная ветвь, считающаяся ответвлением одного из основных спиральных рукавов Галактики.

Расстояние от Солнца до центра Галактики составляет 23-28 тыс. световых лет, или 7–9 тыс. парсек. Это говорит о том, что Солнце расположено ближе к окраине диска, чем к его центру.

Вместе со всеми близкими звёздами Солнце вращается вокруг центра Галактики со скоростью 220–240 км/с, совершая один оборот примерно за 200 млн лет. Значит, за всё время существования Земля облетела вокруг центра Галактики не больше 30 раз.

Скорость вращения Солнца вокруг центра Галактики практически совпадает с той скоростью, с которой в данном районе движется волна уплотнения, формирующая спиральный рукав. Такая ситуация в общем неординарна для Галактики: спиральные ветви вращаются с постоянной угловой скоростью, как спицы колеса, а движение звёзд, как мы видели, подчиняется совершенно иной закономерности. Поэтому почти всё звёздное население диска то попадает внутрь спиральной ветви, то выходит из неё. Единственное место, где скорости звёзд и спиральных ветвей совпадают, – это так называемая коротационная окружность, и именно на ней располагается Солнце!

Для Земли это обстоятельство крайне благоприятно. Ведь в спиральных ветвях происходят бурные процессы, порождающие мощное излучение, губительное для всего живого. И никакая атмосфера не могла бы от него защитить. Но наша планета существует в относительно спокойном месте Галактики и в течение сотен миллионов и миллиардов лет не испытывала влияния этих космических катаклизмов. Может быть, именно поэтому на Земле могла зародиться и сохраниться жизнь.

Долгое время положение Солнца среди звёзд считалось самым заурядным. Сегодня мы знаем, что это не так: в известном смысле оно привилегированное. И это нужно учитывать, рассуждая о возможности существования жизни в других частях нашей Галактики.

Космический орешек

Исследование центра системы в длинноволновом спектре позволило получить подробное инфракрасное изображение. Наша Галактика, как оказывается, в ядре имеет структуру, напоминающую арахис в скорлупе. Этот «орешек» и есть перемычка, включающая в себя более 20 млн красных гигантов (ярких, но менее жарких звезд).

От концов бара расходятся спиральные рукава Млечного Пути.

Работа, связанная с обнаружением «арахиса» в центре звездной системы, не только пролила свет на то, какая наша Галактика по структуре, но и помогла понять, как она развивалась. Вначале в пространстве космоса существовал обычный диск, в каком со временем образовалась перемычка. Под воздействием внутренних процессов бар изменил свою форму и стал походить на орех.

Наблюдение зимних созвездий

От созвездия Льва еще дальше к востоку находятся созвездия, видимые зимой: Близнецы, Возничий, Телец, Малый Пес, Большой Пес и Орион.

Возничий с яркой желтой звездой Капеллой (в переводе на русский — Козочкой) лежит в Млечном пути на таком же расстоянии от Кассиопеи, как и Лебедь, только в противоположную сторону. Рядом с ним лежит зодиакальное созвездие Телец. В этом созвездии самая яркая звезда — Альдебаран — имеет огненно-красный цвет.

Вокруг Альдебарана видно много слабых звезд, целая куча. Это звездное скопление называется Гиадами. Неподалеку находится более тесная куча звезд — Плеяды. В народе ее хорошо знают под именем Утиного Гнезда или Сто­жар. Человек с нормальным зрением видит в ней шесть звезд, а люди с очень острым зрением — до одиннадцати.

Ниже созвездия Тельца находится самое яркое и красивое из созвездий зимнего неба — Орион. Его очертания похожи на перевязанный сноп или на подпоясанную человеческую фигуру. Пояс Ориона образуют три блестящие звезды одинаковой яркости. Их называли также Тремя Волхвами. В левом верхнем углу созвездия находится очень яркая красная звезда Бетельгейзе, а в правом нижнем углу — другая очень яркая звезда белого цвета, Ригель.

Ниже и левее Ориона расположено созвездие Большого Пса, главная звезда которого, по имени Сириус, ярче всех остальных звезд на небе. В морозные зимние ночи она видна прямо на юге, низко над горизонтом, и играет, переливаясь всеми цветами радуги. Из планет только Юпитер, Венера да иногда еще Марс оказываются ярче Сириуса.

Рядом с Тельцом по другую сторону Млечного пути находится созвездие Близнецов с яркими звездами Ка­стором и Поллуксом, а под ним — созвездие Малого Пса, имеющее только две яркие звезды, из которых главная носит имя Процион.

Остальные созвездия, хотя и важные, состоят из более слабых звезд и менее бросаются в глаза при первом изучении звездного неба, так что найти их труднее. Желающие могут разыскать их, пользуясь звездной картой.

Рекомендации

Перемещение в рамках галактики.

Движение Солнечной системы в галактике было открыто англо-немецким астрономом Уильямом Гершелем. Он определил, что ход Солнца направлен к звезде Маасим, или Лямбде в Геркулесе (со скоростью, равной 20 км/с). Современные расчеты всего на десять градусов отличаются от расчетов Уильяма Гершеля. Это пекулярное, или общее движение. Также происходит движение солнечной системы в галактике, которое астрономы наименовали переносным. Солнце, вместе с ближайшими звездами, которые обращаются вокруг галактического центра, устремлено к созвездию Лебедя (со скоростью, равной 200 – 250 км/с)

Звезды, пыль и газ вращаются с разной стремительностью. Это зависит от их местоположения и удаленности от центра. Типичным для спиральных скоплений является то, что и светила, расположенные ближе к ядру, и более удаленные объекты вращаются с примерно одинаковой орбитальной скоростью. Но в Млечном Пути объекты, чьи орбиты приближены к центру вращаются медленнее, чем те, что удалены. Солнце вращается по орбите, имеющей форму почти правильной окружности. Скорость составляет 828000 километров в час по данным, опубликованным в 2009 году. Полный виток вокруг центра диска совершается примерно за 230 миллионов лет, что является галактическим годом.

Вдобавок к орбитальному вращению, происходят также колебания в вертикальном направлении в плоскости Млечного Пути. Пересечение этой плоскости совершается один раз в 30 миллионов лет. Это означает, что Солнце меняет местоположение из северной в южную часть Млечного Пути и наоборот. Определено также, что в данный момент Солнце располагается в северной полусфере (20-25 парсек от плоскости диска). В настоящий момент совершается прохождение Местного межзвездного облака (ММО). Система вошла в него примерно 50 — 150 тысяч лет тому назад, и по подсчетам ученых выйдет из его пределов через 20 тысяч лет.

Траектория столкновения

История создания созвездий

Первый атлас созвездий составил астроном и математик Клавдий Птолемей в 140 году до н. э. В него входили 48 созвездий. Это те самые древние созвездия.

Они носят имена богов и мифических персонажей. Например, Орион, Цефей, Пегас, Андромеда и др. Большинство из этих созвездий — те, которые мы знаем сейчас.

Клавдий Птолемей (слева) — учёный, который разработал модель Вселенной, при которой Земля находится в центре, а все другие планеты вращаются вокруг неё (геоцентрическая система мира). Позднее она была заменена на гелиоцентрическую — Земля и другие планеты вращаются вокруг Солнца.

Более современный атлас под названием «Уранометрия» в 1603 году создал немецкий астроном Иоганн Байер. Атлас примечателен тем, что отличие от действительного положения звёзд, которое было изучено с применением новейших точнейших телескопов, составляет всего 1 угловая минута.

Положение Солнца в галактике

Солнечная система равноудалена от центра галактики и от ее края примерно на 25000 световых лет и находится между главными ветвями, в небольшом рукаве Ориона. Его протяженность и диаметр — 10000 и 3500 световых лет соответственно.

Солнце и окружающие его тела находятся в области «жизненного оптимума» Млечного Пути.

Это спокойный район Вселенной, потому что:

  • местные планеты давно сформированы;
  • «блуждающие» небесные тела разрушились или покинули пределы системы;
  • число мелких объектов уже снизилось и не представляет собой прежний хаос.


Положение галактики Млечный путь в обозреваемой вселенной. Credit: NASA.

Чем астеризмы отличаются от созвездий

Астеризмы – выделяющиеся на небе простые фигуры, которые помогают в поиске различных объектов. Они состоят из воображаемых линий, проходящих через удачно расположившиеся звёзды. Эти звёзды могут принадлежать одному или разным созвездиям. То есть астеризм может быть частью созвездия.

Например, один из самых известных астеризмов – Большой Летний Треугольник, вершины которого составляют яркие звёзды Вега, Денеб и Альтаир – альфы Лиры, Лебедя и Орла. Эти три ярчайших звезды летнего неба в самом деле образуют практически равнобедренный треугольник, очень хорошо заметный.

Еще один известный астеризм – Большой Ковш созвездия Большой Медведицы. Да, это всего лишь астеризм, само созвездие гораздо больше, а Ковш – лишь его часть. Но эта часть очень заметна и в самом деле похожа на ковш.

Астеризм «W» созвездия Кассиопеи тоже не менее известен – каждый его видел и сравнивал именно с этой буквой. И это тоже лишь часть созвездия.

Пояс Ориона, составленный из трёх звёзд, расположенных в ряд – тоже известный многим астеризм.

На самом деле астеризмов на небе очень много. Все они образуют простые фигуры, которые легко запоминаются. Они облегчают поиск разных объектов или созвездий на небе. Например, Летний треугольник находится с первого взгляда, а в его вершинах – главные звёзды сразу трёх созвездий. Другой пример – по ковшу Большой Медведицы легко находится Полярная звезда.

Звёзды, из которых состоит созвездие Возничий

Альфа Капелла — первая по яркости в области. Более того, она стоит на шестом месте среди самых ярких звёзд. Также Капелла является активным источником рентгеновского излучения.Бета представляет собой тройную систему. Она состоит из двух белых субгигантов типа-А и красного карлика. Тета — двойная звезда Махасим. Имеет главный компонент, который относится к переменным типа Альфа Гончих Псов. Другими словами, обладает сильным магнитным полем, а также точными линиями спектра кремния, стронция или хрома. Интересно, что у этой звезды обнаружили спутник 11-й величины. Йота — Аль Каб является оранжевым гигантом. Это довольно яркий объект типа-К. Эпсилон — Алмааз относится к затемнённым бинарным звёздам. В его состав входят сверхгигант и большой тёмный диск вокруг него. Эта Возничего именуется Хедус II. Что с латыни переводится как малыш. На самом деле, это бело-синий карлик, который относится к главной последовательности В-типа.

Звёзды созвездия Возничий

Дзета — двойной объект, причём затмевающий. Включает в себя красный сверхгигант и его спутник. Дельта также является двойной звездой, которая состоит из оранжевого гиганта и спутника.АЕ Возничего, в отличие от других, относится к убегающим звёздам. Это тип звёздных объектов, характеризующийся высокой скоростью движения. Лямбда представлена двойной системой из субгиганта и его компаньона. Существует ещё Гамма Возничего. Которая, на удивление, сейчас принадлежит созвездию Тельца.

Структура Галактики

Диаметр Галактики составляет около 30 тыс. парсек (порядка 100000 световых лет) при оценочной средней толщине порядка 10-15 тыс. св. лет. Галактика содержит, по самой низкой оценке, порядка 200 миллиардов звёзд. (Сделанная на Земле оценка по состоянию на начало XXI века дала цифру в диапазоне предположений от 200 до 400 миллиардов звёзд.) Основная масса звёзд расположена в форме плоского диска. По состоянию на январь 2009, масса Галактики Земной наукой оценивалась в 3×10¹² масс Солнца, или 6×10⁴² кг. Большая часть массы Галактики содержится не в звёздах и межзвёздном газе, а в несветящемся гало из тёмной материи.

Ядро

В средней части Галактики находится утолщение, которое называется балджем (англ. bulge — утолщение), составляющее около 8 тыс. парсек в поперечнике. В центре Галактики, по всей видимости, располагается сверхмассивная чёрная дыра (Стрелец А*) вокруг которой, предположительно, вращается чёрная дыра средней массы. Их совместное гравитационное действие на соседние звёзды заставляет последние двигаться по необычным траекториям.

Центр ядра галактики проецируется на созвездие Стрельца (α = 265°, δ = −29°). Расстояние до центра Галактики 8,5 килопарсек (2,62 · 1022 см, или 27 700 световых лет).

Рукава

Галактика относится к классу спиральных галактик, что означает, что у Галактики есть спиральные рукава, расположенные в плоскости диска. Диск погружён в гало сферической формы, а вокруг него располагается сферическая же корона. Солнечная система находится на расстоянии 8,5 тысяч парсек от галактического центра, вблизи плоскости Галактики (смещение к Северному полюсу Галактики составляет всего 10 парсек), на внутреннем краю рукава, на Земле все ещё носящего название рукав Ориона. Такое расположение не даёт возможности визуально наблюдать форму рукавов из Солнечной системы. (Невозможно визуально наблюдать Галактически рукава из любой иной звёздной системы Федерации или любой другой, расположенной в Галактическом диске. Спиральные рукава галактики можно визуально наблюдать только с корабля, отдалившегося от галактического диска минимум на величину его толщины.) Уже более чем тысячелетней давности Вулканские астрономические наблюдения (Земные астрономы повторили эти наблюдения в 1-й четверти XXI столетия по Земному календарю) молекулярного газа (СО) говорили о том, что у нашей Галактики есть два рукава, начинающиеся у бара во внутренней части Галактики. Кроме того, во внутренней части есть ещё пара рукавов. Затем эти рукава переходят в четырехрукавную структуру, наблюдаемую в линии нейтрального водорода во внешних частях Галактики.

Галактические спутники

В своё время Земные учёные из Калифорнийского университета при исследовании 18 мая 2009 распространённости водорода в областях, подвергающихся искажению, обнаружили, что эти деформации тесно связаны с положением орбит двух галактик-спутников Млечного Пути — Большого и Малого Магеллановых облаков, которые регулярно проходят сквозь окружающую его тёмную материю. Имеются и иные, ещё менее близкие к Млечному Пути галактики, однако их роль (спутники или поглощаемые Млечным Путём тела) не ясна.

Расположение Солнца в Галактике

Согласно последним научным оценкам, расстояние от Солнца до галактического центра составляет 27 000 ± 1 400 световых лет, в то время как, согласно предварительным оценкам, наша звезда должна находиться на расстоянии около 35 000 световых лет от перемычки. Это означает, что Солнце расположено ближе к краю диска, чем к его центру. Вместе с другими звёздами Солнце вращается вокруг центра Галактики со скоростью 220—240 км/с, делая один оборот примерно за 200 млн лет. Таким образом, за всё время существования Земля облетела вокруг центра Галактики не более 30 раз.

В окрестностях Солнца удаётся отследить участки двух спиральных рукавов, которые удалены от нас примерно на 3 тыс. световых лет. По созвездиям, где наблюдаются эти участки, им дали название рукав Стрельца и рукав Персея. Солнце расположено почти посередине между этими спиральными ветвями. Но сравнительно близко от нас (по галактическим меркам), в созвездии Ориона, проходит ещё один, не очень чётко выраженный рукав — рукав Ориона, который считается ответвлением одного из основных спиральных рукавов Галактики.

Скорость вращения Солнца вокруг центра Галактики почти совпадает со скоростью волны уплотнения, образующей спиральный рукав. Такая ситуация является нетипичной для Галактики в целом: спиральные рукава вращаются с постоянной угловой скоростью, как спицы в колёсах, а движение звёзд происходит с другой закономерностью, поэтому почти всё звёздное население диска то попадает внутрь спиральных рукавов, то выпадает из них. Единственное место, где скорости звёзд и спиральных рукавов совпадают — это так называемый коротационный круг, и именно на нём расположено Солнце.

Для Земли это обстоятельство чрезвычайно важно, поскольку в спиральных рукавах происходят бурные процессы, образующие мощное излучение, губительное для всего живого. И никакая атмосфера не смогла бы от него защитить

Но наша планета существует в сравнительно спокойном месте Галактики и в течение сотен миллионов (или даже миллиардов) лет не подвергалась воздействию этих космических катаклизмов. Возможно, именно поэтому на Земле смогла родиться и сохраниться жизнь.

Отличие японской катаны от европейских аналогов

Дайсё — сочетание большого и малого клинка

Культурные традиции и способы ведения боя особенно проявляются в изготавливаемом оружии. Ключевые отличия европейских и японских мечей заключаются во внешнем виде и их назначении.

Полуторные мечи Европы, которым катана больше соответствует по габаритам, наносили рубящие удары. Данное оружие считалось основным и определяло превосходство воина в бою.

Самурайский меч нередко считался вспомогательным оружием к луку. Им наносили режущие удары, поединок был рассчитан на скорость и главенство первого удара. В прямом столкновении с европейским полуторным мечом катана проигрывает — он тяжелее, шире, а качество стали не уступало японскому оружию.

Много мифов связано с технологией изготовления самурайских мечей, на основе которых катанам приписывают фантастические свойства. Особенно эта тема и мифы популяризируются в массовой культуре.

Для японских мастеров основная сложность изготовления заключалась в получении очищенного металла. С XVI века кузнецы стали использовать европейскую импортированную сталь, что значительно облегчило изготовление самурайских клинков.

Многие строят выводы о качестве японских мечей по количеству сохраненных образцов. В Европе нет большого количества оружия, сохранившегося в хорошем состоянии до наших дней. Из-за этого ошибочно делается вывод о его низком качестве.

Сохранность японских клинков обусловлена традициями и тщательным уходом за оружием, передававшимся из поколения в поколение. Меч становился достоянием семьи, имел свою историю. По преданиям, в нем заключались духи всех прежних владельцев.

В Европе подобное отношение к оружию проявилось в меньшей степени. В определенной степени это объясняется доступностью ресурсов для изготовления новых клинков. Сам процесс ввиду лучшего технического развития также отличался большей простотой и меньшим количеством времени.

Научные гипотезы

Ученые предлагают другие версии для пояснения данного феномена:

  • Гипотеза о гибели красного гиганта Сириуса В и превращении его в белого карлика, которую наблюдали люди 2 тысячи лет назад. Кроме несоответствия временных периодов, такое явление должно было бы закончиться формированием вокруг звезды планетарной туманности (например, как Крылья бабочки), чего нет.
  • Гипотеза о наличии в системе Сириуса еще одной звезды — Сириуса С — с периодом обращения в 2 тысячи лет. С приближением Сириуса С к Сириусу А последний приобретает красный спектр свечения. Но пока никакой третьей звезды в этой системе не обнаружено.
  • Гипотеза о наличии в прошлом между Землёй и Сириусом облака межзвёздной пыли, которое и придавало красный оттенок свету Альфы Большого Пса. Доказательств существования этого красного облака пока также не найдено.

Таким образом, у астрономов пока что нет версии, которая объяснила бы такие изменения цвета этой загадочной звезды.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector