Узрг

Немецкие гранатометы «Панцершрек» и «Офенрор»: история создания, описание и характеристики

Параметры воздушной ударной волны объемно-детонирующего взрыва

Основными параметрами ВУВ, определяющими ее поражающее действие на человека и разрушающее по материальным объектам, являются: избыточное давление на фронте ВУВ, импульс положительной фазы сжатия, длительность фазы сжатия и эффективная удельная энергия ВУВ. Профили изменения основных параметров ВУВ при взрыве объемно-детонирующих систем отличаются от аналогичных зависимостей для случая конденсированных взрывчатых веществ (КВВ), описываемых по формулам М.А. Садовского и ГОСТ В-25.801-83 . Зависимости параметров ВУВ для случая наземного взрыва объемно-детонирующих систем были получены на основе метода энергетического подобия взрыва и теории размерностей , численные значения коэффициентов в уравнениях получены методом регрессионного анализа многочисленных экспериментальных данных отечественных и зарубежных исследователей, в которых масса заряда горючего изменялась в пределах от 3 до 1000 кг. Получены зависимости основных параметров ВУВ (избыточного давления на фронте, импульса давления фазы сжатия и длительности фазы сжатия) от расстояния. Данные выражения построены в виде преобразований Сахса и имеют следующий вид:

где:

ΔPф – избыточное давление на фронте ВУВ, Па; P0 – атмосферное давление, Па; a0 – скорость звука в невозмущенной атмосфере (a0 = 340 м/с), м/с; Е – полная энергия взрыва облака ТВС (Е=МгQвзр), Дж; Мг – масса горючего, кг; Qвзр – удельная теплота взрыва горючего, Дж/кг; τ+ – длительность фазы сжатия, с; I+ – импульс давления фазы сжатия, Па.с; R – расстояние от центра облака, м.

Значения эффективной удельной энергии ВУВ (в кДж/м2) рассчитываются по уравнению (5) по значению избыточного давления на фронте ВУВ (в изб. атм) и длительности фазы сжатия (в мс) со средней относительной ошибкой, не превышающей 1% (по сравнению с результатами численного интегрирования):

Поражение человека рассчитывается через приведенную площадь поражения. Принимая допущение, что в точках, равноудаленных от центра взрыва, поражающие характеристики ВУВ имеют одинаковые параметры, а приведенная площадь поражения имеет форму круга, можно рассчитать ее значение по формуле

где:

R0 – радиус от центра взрыва, где вероятность поражения цели равна 1 м; n – количество точек, разбивающих оставшуюся площадь поражения, шт.; Ri+1 – радиус от центра взрыва до очередной точки, м; Рi+1, Рi – граничные вероятности поражения.

Значения параметров ВУВ (избыточное давление на фронте ВУВ, импульс фазы сжатия, длительность фазы сжатия и удельная эффективная энергия) при взрыве облака ГПВС (1000 тонн пропана) для различных расстояний приведены в табл. 4.

Графики зависимостей параметров ВУВ (избыточное давление на фронте ВУВ, импульс фазы сжатия, длительность фазы сжатия и удельная эффективная энергия) при взрыве облака ГПВС (1000 тонн пропана) от расстояния до центра облака приведены на рис. 2.

Рассчитываем площади приведенных зон поражения объемного взрыва по человеку для различных типов поражения и степени укрытости (табл. 5).

С другой стороны в учебном пособии приведена классическая схема сравнения мощности взрыва полусферических зарядов на поверхности земли: КВВ (тротил) и полусферического облака ГПВС (пропан), приводящие к практическому удвоению мощности за счет отражения ВУВ. Учитывая, что пропан при молекулярной массе 44 у.е., по сравнению с воздухом (не менее 29 у.е.), при естественном испарении не будет, как правило, подниматься на высоту более 150 м, как приведено в решении , то можно принять, что высота облака пропана не будет превышать 5-6 м, что составит площадь распространения для объема ГПВС 6,316 – 106 м3 около 1,148 – 106 м2.

Таким образом, на площади одного км2 при инициировании КВВ или случайной искре с необходимой энергией инициирования может произойти объемно-детонирующий взрыв с величиной избыточного давления на фронте ВУВ не менее 12-15 атм, что приведет к 100% поражению людей со степенью не ниже смертельной и тяжелой, что может составить по мощности взрыва не менее 50 килотонн в тротиловом эквиваленте (по ударной волне эффект сопоставим с взрывом ядерного заряда).

Устройство гранаты

5. Ручная осколочная граната РГД-5 (рис. 3) состоит из корпуса с трубкой для запала, разрывного заряда и запала.

6. Корпус гранаты служит для помещения разрывного заряда, трубки для запала, а также для образования осколков при взрыве гранаты. Он состоит из двух частей – верхней и нижней.

Рис. 3. Устройство ручной осколочной гранаты РГД-5:

1 — разрывной заряд; 2 — корпус; 3 — колпак; 4 — вкладыш колпака;

5 — трубка длязапала; 6 — манжета; 7 — запал; 8 — поддон; 9 — вкладыш поддона

Верхняя часть корпуса состоит из внешней оболочки, называемой колпаком, и вкладыша колпака. К верхней части при помощи манжеты присоединяется трубка для запала.

Трубка служит для присоединения запала к гранате и для герметизации разрывного заряда в корпусе.

Для предохранения трубки от загрязнения в нее ввинчивается пластмассовая пробка. При подготовке гранаты к метанию вместо пробки в трубку ввинчивается запал.

Нижняя часть корпуса состоит из внешней оболочки, называемой поддоном, и вкладыша поддона.

7. Разрывной заряд заполняет корпус и служит для разрыва гранаты на осколки.

8. Запал гранаты УЗРГМ (УЗРГМ-2) — унифицированный запал ручной гранаты модернизированный, предназначается для взрыва разрывного заряда (рис. 4). Он состоит из ударного механизма и собственно запала.

Ударный механизм служит для воспламене­ния капсюля-воспламенителя запала. Он состоит из трубки ударного механизма, соединительной втулки, направляющей шайбы, боевой пружины, ударника, шайбы ударника, спускового рычага и предохранительной чеки с кольцом.

Трубка ударного механизма является основанием для сборки всех частей запала.

Соединительная втулка служит для соединения запала с корпусом гранаты. Она надета на нижнюю часть трубки ударного механизма.

Направляющая шайба является упором для верхнего конца боевой пружины и направляет движение ударника. Она закреплена в верхней части трубки ударного механизма.

Боевая пружина служит для сообщения ударнику энергий, необходимой для накола капсюля-воспламенителя. Она надета на ударник и своим верхним концом упирается в направляющую шайбу, а нижним — в шайбу ударника.

Рис. 4. Запал гранаты УЗРГМ (УЗРГМ-2):

а — общий вид; б — в разрезе; 1 — трубка ударного механизма; 2 — направляющая шайба; 3 — ударник;

4 — капсюль-воспламенитель; 5 — втулка замедлителя; 6 — спусковой рычаг; 7 — капсюль-детонатор;

8 — замедлитель;9 — соединительная втулка; 10 — шайба ударника; 11 — боевая пружина; 12 — предохранительная чека

Ударник (рис. 5) служит для накола и воспламенения капсюля-воспламенителя. Он помещается внутри трубки ударного механизма.

Шайба ударника надета на нижний конец ударника и является упором для нижнего конца боевой пружины.

Рис. 5. Ударник и шайба ударника:

1 — проточка для вилки спускового рычага; 2 — шайба ударника; 3 — выступы для упора шайбы; 4 — жало

Спусковой рычаг (рис. 6) служит для удержания ударника во взведенном положении (боевая пружина сжата). На трубке ударного механизма спусковой рычаг удерживается предохранительной чекой.

Рис. 6. Спусковой рычаг:

1 – вилка; 2 — проушина с отверстиями для предохранительной чеки

Предохранительная чека (рис. 7) проходит через отверстия проушины спускового рычага и стенок трубки ударного механизма. Она имеет кольцо для ее выдергивания.

Рис. 7. Предохранительная чека с кольцом

Собственно запал (см. рис. 4) служит для взрыва разрывного заряда гранаты. Он состоит из втулки замедлителя, капсюля-воспламенителя, замедлителя и капсюля-детонатора.

Втулка замедлителя в верхней части имеет резьбу для соединения с трубкой кольцом ударного механизма и гнездо для капсюля-воспламенителя, внутри — канал, в котором помещается замедлитель, снаружи — проточку для присоединения гильзы капсюля-детонатора.

Капсюль-воспламенитель предназначен для воспламенения замедлителя.

Замедлитель передает луч огня от капсюля-воспламенителя к капсюлю-детонатору. Он состоит из запрессованного малогазового состава.

Капсюль-детонатор служит для взрыва разрывного заряда гранаты. Он помещен в гильзе, закрепленной на нижней части втулки замедлителя

9. Запалы всегда находятся в боевом положении. Разбирать запалы и проверять работу ударного механизма категорически запрещается.

Основные характеристики

Эта граната относится к классу ручных оборонительных средств. Проще говоря, она предназначается для поражения живой силы противника осколками вследствие использования ее солдатом вручную, без применения каких-то вспомогательных средств для броска. Словом, классическая граната, принцип действия которой не менялся еще со времен славного бомбардира Петра Алексеевича. Время замедления – от 3,2 до 4,2 секунды, достаточно «размытое».

Чем отличается оборонительная разновидность? Этот термин означает, что при взрыве образуется достаточно большое количество массивных осколков, разлетающихся на дальность, заметно превышающую таковую для броска. Солдат после метания такой гранаты в обязательном порядке должен прыгнуть в достаточно надежное укрытие. В противном случае высока вероятность его поражения собственным оружием. Вот какую гранату называют «лимонкой».

История

Французская граната F-1 модели 1915 года

В 1922 году артиллерийское ведомство РККА взялось за наведение порядка на своих складах. Согласно отчётам артиллерийского комитета на вооружении Красной Армии в то время находились гранаты семнадцати различных типов. Осколочной оборонительной гранаты собственного производства в Союзе ССР на тот период не было. Поэтому временно на вооружение была принята граната системы Миллса, запасы которой на складах имелись в большом количестве (200 000 штук по состоянию на сентябрь 1925 года). В крайнем случае, допускалась выдача войскам французских гранат F-1. Дело было в том, что запалы французского образца отличались ненадёжностью. Их картонные корпуса не обеспечивали герметичности, и детонационный состав отсыревал, что приводило к массовым отказам гранат, а того хуже и к прострелам, что было чревато взрывом в руках.

В 1925 году Артиллерийский комитет констатировал, что потребность в ручных гранатах РККА удовлетворена всего на 0,5 %. Для исправления ситуации Артком 25 июня 1925 года постановил:

  • Артиллерийскому Управлению РККА произвести всестороннее испытание существующих образцов ручных гранат, ныне состоящих на вооружении.
  • Необходимо внести усовершенствования в гранату образца 1914 года, с целью увеличения её поражающей способности.
  • Сконструировать гранату осколочного действия типа Миллс, но более совершенную.
  • В ручных гранатах F-1 швейцарские запалы заменить запалами Ковешникова.

В сентябре 1925 года проводились сравнительные испытания гранат основных типов, имеющихся на складах. Основным проверяемым критерием было осколочное поражение гранат. Выводы, сделанные комиссией, звучали следующим образом:

В 1926 году были проведены испытания гранат F-1 из имеющихся на хранении (на складах в тот момент имелся 1 млн гранат данной системы) с запалом Ковешникова разработки 1920 года. По результатам испытаний конструкция запала была доработана, и после войсковых испытаний в 1927 году граната F-1 с запалом Ковешникова под наименованием ручная граната марки Ф-1 с запалом системы Ф. В. Ковешникова в 1928 году была принята на вооружение РККА.

Все имевшиеся на складах гранаты были снабжены запалами Ковешникова уже к началу 1930-х годов, а в скором времени в СССР было налажено собственное производство корпусов гранат.

В 1939 году инженер Ф. И. Храмеев доработал гранату — корпус лимонки стал несколько проще, утратил нижнее окно.

Существует ещё одна версия появления гранаты Ф-1. В 1999 году полковник в отставке Федор Иосифович Храмеев сообщил в интервью журналу «Коммерсантъ Власть», что в 1939 году им была сконструирована граната Ф-1.

Как сообщил в интервью Ф. И. Храмеев, предварительные испытания гранаты были минимальны, было изготовлено всего 10 опытных образцов, которые были вскоре испытаны, а затем конструкция была запущена в серийное производство:

В 1942—43 годах запал Ковешникова заменили стандартным унифицированным запалом УЗРГ; после окончания Великой Отечественной войны запал был усовершенствован, повышена надёжность срабатывания, и он получил обозначение УЗРГМ.

Вредители гибискуса: описание и фото

Тля

Мелкое насекомое, которое селится на листьях, побегах и бутонах растения. Быстро размножается и таким образом покрывает всю поверхность растения, создавая липкий налет на нем и уничтожая молодые листочки. Для избавления от тли на раннем этапе можно использовать мыльный раствор. Им промывают зараженные участки цветка. На более позднем этапе растение обрабатывают инсектицидами.

Щитовки

После их появления на растении образовываются коричневые бугорки.

Для избавления от них растение опрыскивают инсектицидами.

Сделать это нужно как можно скорее после обнаружения вредителя, иначе растение может погибнуть.

Червец

Если на растении появились восковидные белые выделения на черенках и пазухах листьев, то его поразил червец.

Для избавления от него листья обрабатывают минеральными маслами. Делать это необходимо в тени.

Галлица

Мелкая мошка, которая приводит к пожелтению, засыханию листьев и бутонов. Внутри бутонов хранятся яйца этой мошки, из которых появляются черви. Именно они съедают бутоны, которые в итоге опадают.

Чтобы вывести этого вредителя, нужно обработать почву любым средством от грунтовых вредителей и собрать пораженные бутоны до их опадания.

Белокрылка

Приводит к пожелтению листьев, покрывает их клейкими выделениями.

Насекомые или их желтые личинки селятся под листом.Увидеть вредителей можно и без увеличительного стекла.

Для лечения обработать растение инсектицидом и нанести калийное мыло.

Принцип работы

Принцип работы гранаты следующий. Когда боец выдергивал чеку, то ударник не спускался с боевого взвода. Это связано с тем, что вилка спускового рычага находилась в выточке ударника и надежно его фиксировала в верхнем положении. После метания гранаты солдатом, спусковой рычаг извлекался из выточки ударника при отсутствии давления пальцев бросающего. После чего ударник своим жалом при воздействии пружины производил накол капсюля-воспламенителя и «поджигал» его. Далее, на протяжении 3,2 — 4 с, пламя перемещалось к дистанционной части запала, после чего доходило до капсюля-детонатора, который в свою очередь взрывался, приводя при этом к детонации взрывчатого вещества. Далее происходил разрыв цилиндрического корпуса гранаты и разлет осколков в различные стороны.


Лента для осколков РГ-42

Чтобы разрядить гранату нужно было вывернуть с нее запал, после чего его уложить в подсумок, а отверстие закрыть пластмассовой или металлической пробкой.

Чтобы использовать гранату нужно:

  1. Взять гранату в руку, уверенно прижав пальцами предохранительный рычаг к корпусу.
  2. Разжать «усики» шплинта (чеки).
  3. Выдернуть чеку и метнуть гранату в ряды противника.

Права и обязанности

Страницы

Ручная дымовая граната РДГ-2

РДГ-2

В НИИПХ в подмосковном Сергиево Посаде для Сухопутных войск в 1970-е годы была создана ручная дымовая граната РДГ-2, которая была принята на вооружение Советской армии и армий Варшавского договора.РДГ-2б РДГ-2 предназначена для маскировки боевых действий одиночных солдат и подразделений в ближнем бою. Граната может также использоваться для имитации горения боевой техники.

Граната состоит из цилиндрического картонного корпуса, заполненного аэрозолеобразным и зажигательным составами, воспламенителя терочного типа, двух картонных диафрагм, закрывающих с торцов корпус РДГ-2.

Граната РДГ-2 влаго- и водонепроницаемая, может использоваться для постановки дыма на воде.

При выдергивании шнура за кольцо срабатывает терочный капсюль-воспламенитель, который воспламеняет замедлитель. Через 3 сек. лучевой импульс замедлителя воспламеняет таблетки, продукты, горения которых истекают через дымовыходные отверстия, образуя дымовую завесу. Пиротехнический состав поджигается запалом-спичкой, загорающейся от трения о терку, расположенную между верхней крышкой и диафрагмой. Дым, который образуется при сгорании состава, выходит через отверстия верхней и нижней диафрагм и создает завесу.

Длина гранаты 160 и 240 мм, диаметр корпуса 46 и 49 мм. Вес РДГ-2 около 560 и 500 г, гранату можно бросать на дальность до 35 м.

РДГ-2б

Ручные дымовые гранаты имеются четырех образцов: РДГ-2б, РДГ-2ч, РДГ-2х, РДГ-П.

Ручная дымовая граната применяется для постановки аэрозольных завес плотного белого (РДГ-2б) или черного цвета (РДГ-2ч) с длиной до 30 — 35 м, время дымообразования 1-2 мин. Поскольку внешне они абсолютно одинаковы, их так и различают — по буквам «х» и «ч» на корпусе.

РДГ-2ч

Граната РДГ-2х производит дым раздражительного свойства и используется для моделирования химической атаки противника.

Для приведения в действие РДГ-2б (РДГ-2ч) необходимо снять крышки с помощью тесемок, резко провести теркой по головке запала и бросить гранату.

Для приведения в действие РДГ-2х (РДГ-П) необходимо снять крышки с помощью тесемок, надеть на кисть или на пальцы тесьму запального приспособления и, задержав тесьму в руке, бросить гранату (резко выдернуть за кольцо шнур).

РДГ-2х

Ручные дымовые гранаты РДГ-2 использовались в Афганистане для выкуривания противника из пещер и прочих укрытий. Ими прикрывались при расчистке завалов после взрывов и лавин на «серпантине», при эвакуации под обстрелом советских воинов из горящих, подорвавшихся на минах БМП и БТР.

По отзывам командиров частей и подразделений, принимавших участие в боевых действиях, потери войск и техники при применении дымовых средств снизились в 2 — 4 раза.

Гранаты РДГ-2 производятся в НИИПХ и ЧПО им. В.И. Чапаева.

Кроме Советского Союза граната РДГ-2 производилась в Болгарии, там же выпускался модернизированный вариант РДГ-3 с желтым дымом для маркировки техники.

РДГ-П

История создания российской гранаты Ф-1

Основной для разработки первого варианта российской гранаты стали следующие системы, состоявшие на вооружении в начале прошлого века:

  • французская ручная граната F-1;
  • английская граната системы Лемона.

Именно это и объясняет маркировку той гранаты, которая используется в российской армии до настоящего времени, а также ее широко распространенное прозвище «Лимонка».

В раннем российском варианте был установлен далекий от совершенства запал системы Ковешникова, время задержки взрыва которого составляло 6 секунд. Впервые эта оборонительная граната подверглась модернизации в 1939 году. Два года спустя, в 1941 году, в ней был установлен запал системы Винцени, задерживавший взрыв гранаты на 3,5 — 4,5 секунды. Позже этот элемент стал называться унифицированным запалом ручных гранат (УЗРГ), который до восьмидесятых годов прошлого столетия являлся единым запалом для всех разрабатывавшихся ручных гранат осколочного действия. Его характеристики удовлетворяли и продолжают удовлетворять требованиям современного ближнего боя.

Примечания

  1. Отряды спецназначения // «Известия», № 11 (20357) от 11 января 1983. стр.4
  2. ↑  (англ.)

Общая характеристика задач оценки

Для принятия решений по защите от воздействия воздушной ударной волны (ВУВ) взрыва на здания, сооружения, технику или на людей, а также для выработки мер взрывобезопасности необходимы данные, характеризующие взрывы, которые могут происходить во время военных действий, в производственной сфере и в быту. Наиболее достоверные сведения о взрыве можно получить путем проведения эксперимента. Однако, такой подход не всегда применим. Поэтому наиболее распространены расчетные методы, позволяющие определять значения параметров, характеризующих взрывы. В ходе расчетов используются следующие показатели:

вид и количество взрывчатого вещества (ВВ); условия взрыва; расстояние от места взрыва до места оценки его последствий; параметры ударной волны; степень повреждения (разрушения) зданий, сооружений, техники или степень поражения людей.

Для проведения расчетов разработано и представлено в технической литературе значительное количество функциональных зависимостей, которые связывают между собой эти показатели. Конкретный вид расчетных соотношений, выражающих эти функциональные зависимости, определяется условиями взрыва, к которым относятся: тип ВВ (конденсированное ВВ, газовоздушные смеси, пылевоздушные смеси и др.), место взрыва (воздушный, наземный или заглубленный взрыв), наличие преград, отражающих ударную волну и другие условия.

Разные авторы предлагают разные виды функциональных зависимостей для определения одних и тех же показателей, позволяющие получить либо большую точность, либо простоту, либо какие-нибудь другие преимущества при проведении расчетов

Поэтому при выборе того или иного соотношения для проведения расчетов следует особое внимание обращать на систему ограничений, определяющих возможность его использования

Вся совокупность задач по проведению расчетов может быть разделена на две группы: задачи прогнозирования последствий взрыва по заданному количеству ВВ и задачи определения количества ВВ по заданным последствиям взрыва.

Задачи прогнозирования соответствуют ситуации, когда взрыва еще не было, т.е. требуется рассчитать показатели, характеризующие будущий взрыв. В таких задачах в качестве исходных данных обычно используются сведения о количестве ВВ и об условиях взрыва. При этом в результате расчетов должны быть получены значения параметров ударной волны (или других поражающих факторов) на заданном расстоянии от места взрыва (прямая задача), или определено расстояние от места взрыва, на котором параметры ударной волны будут иметь заданное значение (обратная задача).

Задачи определения исходных характеристик ВВ по результатам взрыва обычно приходится решать при расследовании и анализе причин аварийных взрывов. В этих задачах известны условия взрыва, место взрыва и степень разрушений по мере удаления от его эпицентра. В результате решения должно быть определено количество взорвавшегося вещества. Для расчетов в этих задачах используются те же функциональные зависимости между степенью повреждения, количеством ВВ и расстоянием от места взрыва, что и при решении задач прогнозирования.

Настоящий курс лекций не предусматривает подробного рассмотрения всего многообразия вариантов проведения расчетов для различных условий взрыва и поражающих факторов. Далее будут рассматриваться только приближенные методы проведения расчетов, связанные с наиболее распространенными типами взрывов конденсированных ВВ и ГВС в открытом, не замкнутом пространстве. Из числа поражающих факторов взрыва будет рассматриваться только воздушная ударная волна.

Расчетные соотношения, используемые при решении задач.

Тротиловый эквивалент массы ВВ.

Количество взрывчатого вещества или его массу МBB при проведении расчетов выражают через тротиловый эквивалент МТ. Тротиловый эквивалент представляет собой массу тротила, при взрыве которой выделяется столько же энергии, сколько выделится при взрыве заданного количества конкретного ВВ. Значение тротилового эквивалента определяется по соотношению:

Конструкция

Конструктивно граната очень простая и технологичная и многими элементами схожа с РГ-41. Она состоит из тонкостенного цилиндрического корпуса, внутри которого размещается взрывчатое вещество и запал. Корпус внизу закрыт плоским дном, а сверху — крышкой. К верхней крышке прикреплялась трубка с резьбой внутри и фланцем для возможности ввинчивания УЗРГ 1941 года (универсальный запал для ручных гранат). Так же возможно использование и УЗРГ, а так же УЗРГМ-2. При транспортировке УЗРГ хранился отдельно от гранат, а отверстие трубки закрывалось металлическим колпачком или пластмассовой пробкой.

Внутри корпуса гранаты размещено ВВ типа тротил (A-IX-1) массой в 110-120 г, вокруг которого намотана металлическая лента с насечками в 4-6 слоев для создания осколков при детонации. Такой подход должен был обеспечивать создание огромного числа осколков и дробления корпуса на части. В результате практического применения было выявлено, что подобная насечка не всегда приводит к заявленному дроблению ленты на осколки. Бывали и случаи, когда огромная часть ленты отлетала единым осколком на расстояние свыше 25 м. По такой причине крайне трудно сказать, что граната является исключительно наступательной, а скорее всего смешанного типа — наступательно-оборонительной.


Конструкция РГ-42

Согласно заявленным характеристикам, радиус разлета осколков составляет 25 м, а площадь осколочного поражения равна 30 кв. м.

Гранаты упаковываются в деревянные ящики по 20 штук, рядом в ящике хранятся и запалы в двух герметичных запаянных банках.

Современные ручные гранаты

Сегодня существует множество вспомогательных и противопехотных метательных снарядов. Они решают широкий спектр задач: от разгона митингов газовыми и шумовыми средствами подавления, до выведения из строя военной техники и живой силы противника.

Эти “карманные” бомбы легкие, универсальные, не требуют дополнительного оборудования и каких-либо серьезных навыков для применения.

Если говорить об уничтожении противника в ближнем бою, то гранаты бывают двух видов: оборонительные и наступательные. Раньше были еще и противотанковые, но с развитием реактивных гранатометов нужда в них абсолютно отпала.

При этом для уничтожения танка приходилось очень близко подобраться к боевой машине, а это получалось далеко не у всех героев.

Сейчас у каждого бойца на поле боя есть при себе несколько противопехотных снарядов. В нашей армии и армий стран СНГ применялись и применяются сейчас в основном два типа этого оружия:

  1. Принятая в 1940 году Ф-1.
  2. РГД-5, поступившая на вооружение в 1954 году.

За полвека произошло множество военных конфликтов, где эти советские гранаты зарекомендовали себя, как эффективное, надежное и простое оружие. В ближайшем будущем с вооружения их снимать никто не осмелится.

Позже, в 70-х были разработаны РГН (ручная граната наступательная) и РГО (ручная граната оборонительная). Конструктивно они очень сильно отличаются от потомков, но характеристики примерно одинаковые. Основные отличия в том, что запалы имеют датчик удара о какую-либо поверхность (кроме грязи или снега), приводящий к детонации оружия. РГН имеет гладкий круглый корпус с внутренней насечкой и пластмассовый запал.

Для увеличения числа осколков есть еще внутренний корпус с насечками. РГО также имеет круглый стальной корпус с четырьмя полусферами, т. е. 2 внутренние и 2 внешние. Радиус разлета осколков 150 метров, а убойный 16-17 метров.

Оборонительная граната Ф-1 имеет радиус (200 метров) разлета осколков больше, чем длина броска метателя (40-50 метров). Соответственно применяется только из укрытия или из бронетранспортера, чтобы не попасть под шальные осколки.

Наступательная граната РГД-5 применяется при атаке, когда осколками нужно не “зацепить” наступающих соратников и себя. При средней дальности броска гранаты 45 метров, радиус разлета осколков 25-35 метров, а радиус поражения около 5 метров. Бросать РГД можно с открытой местности, не опасаясь оказаться раненым осколками.

Литература

О правильном использовании

Перед применением солдат должен разогнуть предохранительные усики, а затем взять гранату таким образом, чтобы рука полностью фиксировала прижимной рычаг к корпусу. Перед самым броском (!) нужно выдернуть чеку. Держать «лимонку» в таком положении можно неограниченно долгое время, так как при сжатом рычаге капсюль не инициируется, а потому взрыв не произойдет.

Как только будет выбрана цель, следует энергично метнуть в нее гранату. Рычаг в этот момент провернется, освободив боевой ударник, и отлетит в сторону. Ударник инициирует капсюль (проколов его), а через три-четыре секунды произойдет взрыв.

Помните, как в фильмах неоднократно показывали эпизод, когда отчаянный матрос (солдат, революционер, партизан и т. д.) в последнем, отчаянном рывке выдергивает чеку зубами? Если вы решите повторить этот трюк, заранее озаботьтесь наличием хорошего стоматолога, так как передние зубы вам 100% придется менять. Даже рукой, если фиксирующие усики не разогнуты, такой подвиг может совершить разве что так что какие уж тут зубы… Словом, не вздумайте выдирать чеку таким образом!

Описание[ | ]

Граната представляет собой картонный цилиндрический корпус желто-коричневого цвета диаметром 5 см и высотой 21,5 см. Вес гранаты 500—600 гр. Время разгорания до 15 секунд, время интенсивного дымовыделения 60-75 секунд. При средних метеоусловиях одна граната РДГ-2Б даёт непросматриваемое облако белого дыма длиной около 20 метров, а граната РДГ-2Ч облако дыма чёрного цвета длиной до 10-15 метров.

С обеих торцов гранаты завальцованы две картонные крышки. С нижнего конца гранаты под крышкой в диафрагме имеются отверстия для выхода дыма, в верхнем конце под крышкой уложена воспламенительная тёрка, а в диафрагму вставлен запал-спичка и имеются отверстия для выхода дыма.

Антраценовые смеси состоят из антрацена (С14Н10), хлористого аммония и бертолетовой соли. При горении антраценовой смеси часть антрацена сгорает за счёт кислорода бертолетовой соли, при этом выделяется значительное количество тепла. Остальной антрацен возгоняется (сублимирует), и после конденсации в холодном воздухе превращается в дым. Хлористый аммоний при высоких температурах, образующихся при горении антрацена, разлагается на аммиак и хлористый водород (термическая диссоциация). В холодном воздухе оба эти вещества соединяются вновь с образованием хлористого аммония, образующего устойчивый аэрозоль. Таким образом, хлористый аммоний, наряду с антраценом, также является дымообразователем. Кроме того, хлористый аммоний препятствует воспламенению смеси. Температура горения дымосмеси этого типа — 350-400°. Антраценовыми смесями с различным соотношением компонентов в зависимости от назначения, снаряжаются ручные дымовые гранаты РДГ-2Ч с антраценовой смесью чёрного дыма, РДГ-2Б — белого дыма (смесь чёрного дыма состоит только из антрацена и бертолетовой соли); дымовые шашки ДМ-11, ШД-Б (шашка дымовая блочная), БДШ-5, БДШ-15 (большие дымовые шашки).

Дымовая шашка ДМ-11

Металлохлоридные смеси состоят из порошка алюминия, железной окалины (закиси окиси железа), гексахлорэтана С2Cl6. При поджоге металлохлоридной смеси с помощью запала, развивающего температуру около 1000°, протекают реакции между гексахлорэтаном и закисью окиси железа, между гексахлорэтаном и алюминием; FеО•Fе2О3 (Fе3O4) + С2Сl6 = FеСl3 + СО2 + СО + СОСl2 + С + Q 2Al + С2Сl6 = 2АlCl3 + 2С + Q Образующиеся хлориды окисного железа и алюминия возгоняются при температуре горения дымосмеси (300-1000°). Пары возогнанных хлоридов конденсируются в холодном воздухе после выхода из шашки (гранаты), образуя аэрозоль. Так как хлорное железо и хлористый алюминий весьма гигроскопичны, то в воздухе они взаимодействуют с влагой воздуха с образованием гидратов, которые, притягивая влагу, образуют капельки тумана. Роль алюминия помимо дымообразования состоит ещё в том, что он в значительной степени повышает температуру горения дымосмеси, т. к. при этом возможно и протекание реакции между закисью окиси железа и порошком алюминия так, как это происходит при горении термитной смеси. Особенность горения металлохлоридных смесей является то, что при этом образуется значительное количество фосгена, который может вызвать поражение людей, находящихся в дыму без противогазов. Металлохлоридными смесями снаряжаются ручные дымовые гранаты РДГ-II, РДГ-2х, дымовые шашки ДМХ-5, УДШ (унифицированная дымовая шашка).

Популярные производители дымовых шашек

Какую дымовую шашку купить из большого списка производителей отечественного и импортного производства, можно выделить такие наименования:

«Тихий вечер»

Инсектицидная дымовая шашка от комаров, клопов, мух и прочих насекомых. Лучшее на сегодняшний день средство, если судить по многочисленным положительным отзывам. Имеет отличные показатели, как в закрытых помещениях, так и на открытых территориях. Одной шашки хватает для обработки объема в 1тыс. м³.

Стоит такая шашка в диапазоне 450–500 рублей.

«Климат»

Это уже не бытовые, а мощные серные шашки, предназначенные для различных сельскохозяйственных хранилищ, элеваторов, ферм для скота. Уничтожает клещей, блох, вшей.

Цена одной 300 граммовой шашки около 60 рублей, обрабатываемый объем от 10 до 15 м³.

«Фас»

Практически полный аналог «Климата», единственное чуть дешевле.

Покупка такой серной шашки обойдется примерно в 50 рублей.

«Сити»

Такая перметриновая шашка предназначенна для дымовой обработки жилых и хозяйственных построек. Прекрасно справляется с муравьями, клопами, тараканами, мокрицами.

Цена за единицу — 100–120 рублей.

Существует ряд гексахлорановых шашек типа «Г-17», но в силу крайней токсичности их применение не рекомендуется без сопровождения специалистов.

ПТРС

Обучение бойцов

При поражении осколками гранаты велика доля случайности: так, в некоторых случаях подрыв гранаты в непосредственной близости от бойца может только оглушить его; однако известны случаи, когда одиночный осколок гранаты поражал бойца, находящегося в укрытии на дистанции 70-80 метров от места подрыва гранаты.

Для новобранцев метание гранаты часто представляет психологическую проблему: основываясь на представлениях, полученных из боевиков, они считают гранату оружием чудовищной разрушительной силы и испытывают панический страх, что приводит к глупым и абсурдным действиям, которые действительно могут представлять угрозу их жизни. Так, например, они могут метнуть вместо гранаты чеку, а гранату оставить в окопе; уронить активированную гранату себе под ноги и, будучи парализованными страхом, стоять, дожидаясь взрыва, вместо того, чтобы отбежать и залечь

Также важно соблюдать технику безопасности при метании гранат в зимнее время: граната при броске может зацепиться за торчащие части одежды и полететь в опасном для бойца направлении, или даже закатиться в рукав

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector