Ударная волна
Содержание:
- Содержание
- Противопоказания и побочное действие
- Общие макроскопические свойства ударных волн[править | править код]
- Головная ударная волна в инфракрасном диапазоне
- Операторы
- Примечания
- Посол Индии рассказал о ходе переговоров о закупке у России МиГ-29 и Су-30
- Таблица размеров ремней
- Перспективы
- Нож кукри чертежи с размерами
- Скорость распространения ударной волны
- Пример 2
- Микроскопическая структура ударной волны
- Защита от ядерного удара
- Особенности метода
- Еще тесты
- Ударная волна
- Оценка степени повреждения отдельно стоящих зданий
- Госпошлина
- LiveInternetLiveInternet
- Головная ударная волна вокруг Земли
- Гелиопауза
- Головные ударные волны вокруг звёздных объектов
- Солнечный ветер
- Тактико-технические характеристики Фаустпатрона
- Световое излучение
Содержание
Противопоказания и побочное действие
Несмотря на то что специалисты позиционируют ударно-волновую терапию как безопасный метод лечения, безопасным он может быть только при соблюдении множества условий.
При ударно-волновой терапии происходит довольно сильное воздействие на организм, поэтому имеется множество противопоказаний для применения этого метода лечения.
Беременность
Детский, подростковый возраст, а также незакрытые зоны роста костей. У каждого человека закрытие зон роста происходит индивидуально, в среднем до 17-20 лет, однако, в некоторых случаях может продолжаться до 23-25 лет. Воздействие на зоны роста костей может замедлить или остановить их рост и привести к различным деформациям.
Наличие кардиостимулятора. Синхронизация частоты работы кардиостимулятора и аппарата ударно-волновой терапии гарантированно приведет к помехам в работе и остановке искусственного водителя ритма.
Воздействие на область головы. В зависимости от интенсивности и времени воздействия от преходящих нарушений центральной нервной системы до разрыва кровеносных сосудов и инсульта.
Воздействие на крупные сосуды, кишечник, легкие. Ударная волна в полости органа может привести к значительному увеличению объема, что может привести к разрывам, в случае с сосудами – к тромбозу.
Онкологические заболевания, особенно в зоне воздействия. Процедуры ударно-волновой терапии усиливают кровоток в области воздействия, при онкологических заболеваниях это может привести к увеличению опухоли или возникновению новых метастазов.
Нарушение свертывания крови. При воздействии ударной волны на ткани, мелкие кровеносные сосуды могут повреждаться, в случае плохой свертываемости могут возникать кровотечения и обширные гематомы.
Следует избегать воздействия ударной волны на нервы и нервные сплетения. Воздействие ударной волны на нерв может приводить к временному парезу или потере чувствительности в зоне иннервации этого нерва.
Наличие инфекции в зоне воздействия. Усиление кровотока в зоне воздействия приведет к распространению инфекции с кровью.
Воздействие на позвоночник. Несмотря на возможность использования ударно-волновой терапии в комплексе лечения спондилеза и спондилоартроза, применение этого метода многие специалисты считают нецелесообразным, так как велика вероятность повреждения межпозвонковых дисков, корешков спинномозговых нервов или самого спинного мозга
Кроме того, увеличение кровотока в области позвоночника может привести к разрастанию сосудистой сети и образованию гемангиом в телах позвонков.
При соблюдении всех вышеназванных предосторожностей побочное действие ударно-волновой терапии проявляется незначительно: могут возникнуть мышечные боли в области воздействия, чувство усталости или головная боль.
Таким образом, метод ударно-волновой терапии обоснован с точки зрения физики и физиологии и эффективен при ряде заболеваний. Вместе с тем, не стоит ожидать положительных результатов от применения ударно-волновой терапии при заболеваниях, на которые этот метод не ориентирован, воспринимать его как средство от всех болезней. Применение ударной волны в лечебных целях сопряжено с множеством рисков, поэтому назначать и проводить процедуры ударно-волновой терапии должен высококвалифицированный специалист.
Общие макроскопические свойства ударных волн[править | править код]
Термодинамика ударных волнправить | править код
С макроскопической точки зрения ударная волна представляет собой воображаемую поверхность, на которой термодинамические величины среды (которые, как правило, изменяются в пространстве непрерывно) испытывают устранимые особенности: конечные скачки. При переходе через фронт ударной волны меняются давление, температура, плотность вещества среды, а также скорость её движения относительно фронта ударной волны. Все эти величины изменяются не независимо, а связаны с единственной характеристикой ударной волны — числом Маха. Математическое уравнение, связывающее термодинамические величины до и после прохождения ударной волны, называется ударной адиабатой, или адиабатой Гюгонио.
Ударные волны не обладают свойством аддитивности в том смысле, что термодинамическое состояние среды, возникающее после прохождения одной ударной волны, нельзя получить последовательным пропусканием двух ударных волн меньшей интенсивности.
Происхождение ударных волнправить | править код
Воздействие ударной волны, возникшей при выстреле из пушки, на водную поверхность
Звук представляет собой колебания плотности, скорости и давления среды, распространяющиеся в пространстве. Уравнение состояния обычных сред таково, что в области повышенного давления скорость распространения возмущений малой амплитуды возрастает. Это неизбежно приводит к явлению «опрокидывания» возмущений конечной амплитуды, которые и порождают ударные волны.
В силу этого механизма, ударная волна в обычной среде — это всегда волна сжатия.
Описанный механизм предсказывает неизбежное превращение любой звуковой волны в слабую ударную волну. Однако в повседневных условиях для этого требуется слишком большое время, так что звуковая волна успевает затухнуть раньше, чем нелинейности становятся заметны. Для быстрого превращения колебания плотности в ударную волну требуются сильные начальные отклонения от равновесия. Этого можно добиться либо созданием звуковой волны очень большой громкости, либо механически, путём околозвукового движения объектов в среде. Именно поэтому ударные волны легко возникают при взрывах, при около- и сверхзвуковых движениях тел, при мощных электрических разрядах и т. д.
Головная ударная волна в инфракрасном диапазоне
Головная ударная волна R Гидры. Слева: снимок в инфракрасном диапазоне; справа: рисунок художника
Головная ударная волна может наблюдаться не только в видимом, но и инфракрасном диапазоне.
В 2006 году в инфракрасном диапазоне была обнаружена головная ударная волна вокруг звезды R Гидры
Инфракрасное изображение головной ударной волны (желтая дуга), созданный звездой ζ Змееносца в межзвездном облаке пыли и газа
При движении звезда ζ Змееносца образует перед собой дугообразную волну из межзвёздного вещества, которая отлично видна на инфракрасном снимке, сделанном космическим аппаратом WISE. На фотографии в искусственных цветах ζ Змееносца выглядит голубоватой. Она расположена вблизи центра картинки и движется вверх со скоростью 24 км/с. Сильный звёздный ветер летит впереди звезды, сжимая и нагревая межзвёздное вещество и формируя головную ударную волну. Вокруг лежат облака относительно невозмущённого вещества. Фотография WISE простирается на 1.5 градуса, что охватывает около 12 световых лет.
Операторы
Примечания
Посол Индии рассказал о ходе переговоров о закупке у России МиГ-29 и Су-30
Таблица размеров ремней
Перспективы
Нож кукри чертежи с размерами
Скорость распространения ударной волны
Скорость распространения ударной волны в среде превышает скорость звука в данной среде. Превышение тем больше, чем выше интенсивность ударной волны (отношение давлений перед и за фронтом волны): (pуд.волны — pсп.среды)/ pсп.среды.
Например, недалеко от центра ядерного взрыва скорость распространения ударной волны во много раз выше скорости звука. При удалении с ослаблением ударной волны, скорость её быстро снижается и на большой дистанции ударная волна вырождается в звуковую (акустическую) волну, а скорость её распространения приближается к скорости звука в окружающей среде. Ударная волна в воздухе при ядерном взрыве мощностью 20 килотонн проходит дистанции: 1000 м за 1,4 с, 2000 м — 4 с, 3000 м — 7 с, 5000 м — 12 с. Поэтому у человека, увидевшего вспышку взрыва, есть какое-то время для укрытия (складки местности, канавы и пр.) и тем самым уменьшения поражающего воздействия ударной волны.
Ударные волны в твёрдых телах (например, вызванные ядерным или обычным взрывом в скальной породе, ударом метеорита или кумулятивной струёй) при тех же скоростях имеют значительно большие давления и температуры. Твёрдое вещество за фронтом ударной волны ведёт себя как идеальная сжимаемая жидкость, то есть в нём как бы отсутствуют межмолекулярные и межатомные связи, и прочность вещества не оказывает на волну никакого воздействия. В случае наземного и подземного ядерного взрыва ударная волна в грунте не может рассматриваться, как поражающий фактор, так как она быстро затухает; радиус её распространения невелик и будет целиком в пределах размеров взрывной воронки, внутри которой и без того достигается полное поражение прочных подземных целей.
Пример 2
Определить с помощью расчета по формулам избыточное давление и удельный импульс во фронте ВУВ на расстоянии 100 м от емкости, в которой находится 10 т. пропана, хранящегося в жидком виде под давлением, при ее разгерметизации и взрыве образовавшейся ГВС.
1. Определение массы пропана в составе ГВС
2. Определение тротилового эквивалента
3. Определение приведенного радиуса взрыва
4. Определение избыточного давления во фронте ударной волны
откуда
следовательно
5. Определение значения удельного импульса ударной волны
откуда
Приближенная оценка параметров взрывной волны за пределами облака может быть проведена по таблице 4, в которой представлены значения избыточного давления ΔPФ и эффективного времени действия фазы сжатия θ, заранее рассчитанные для различных значений R/r. Значения параметров, указанных в таблице, получены исходя из давления внутри газового облака 1700 кПа.
Микроскопическая структура ударной волны
Толщина ударных волн большой интенсивности имеет величину порядка длины свободного пробега молекул газа (более точно — ~10 длин свободного пробега, и не может быть менее 2 длин свободного пробега; данный результат получен Чепменом в начале 1950-х). Так как в макроскопической газодинамике длина свободного пробега должна рассматриваться равной нулю, чисто газодинамические методы непригодны для исследований внутренней структуры ударных волн большой интенсивности.
Для теоретического изучения микроскопической структуры ударных волн применяется кинетическая теория. Аналитически задача о структуре ударной волны не решается, но применяется ряд упрощённых моделей. Одной из таких моделей является модель Тамма-Мота-Смита.
Защита от ядерного удара
Для защиты от ударной волны ядерного взрыва применяются средства индивидуальной защиты и противорадиационные укрытия. Они способны уберечь людей от опасных излучений при радиоактивном заражении местности. Помимо этого, они могут защитить от светового удара, проникающей радиации и в некоторой степени от ударной волны, а также от попадания на кожу и в организм человека всех опасных веществ, которые выделяются в результате ядерной реакции при взрыве.
Безопасные места оборудуют в подвальных этажах зданий и различных сооружений. Также иногда встречаются отдельностоящие сооружения (в виде промышленных зданий или построек из подручных материалов). Под такие укрытия приспосабливают любые пригодные заглубления в помещениях: подвалы, погреба, подземные каналы. Для повышения безопасности заделывают оконные и лишние дверные проемы, насыпают дополнительный слой грунта на перекрытия и в случае необходимости делают грунтовую подсыпку у наружных стен, которые выступают выше поверхности земли.
Помещение тщательно герметизируют (например, окна, трубопроводы, щели и т. д. проклеивают подручными материалами). Укрытия, вместимость которых составляет до 30 человек, вентилируются естественным путем. На наружных выводах вентиляции прикрепляют козырьки, а на входах в помещение — плотные заслонки, которые закрывают на время действия радиации и выпадения зараженных осадков. Внутри убежище оборудуется аналогично обычным убежищам.
В помещениях, которые приспособлены под укрытия, но не оборудованы водопроводом и канализацией, устанавливают емкости для воды и выгребную яму. Кроме того, в укрытии обязательно устанавливают подставки, стеллажи, камеры или лари и другие приспособления для продовольствия. Освещают помещения от подходящей наружной или переносной электросети. Защитные свойства противорадиационного убежища от воздействия взрыва ударной волны и излучений оцениваются коэффициентом ослабления радиации. Его параметр показывает, во сколько раз помещение уменьшает наружную дозу радиации.
Особенности метода
Ударно-волновая терапия обладает целым рядом преимуществ. Среди ее достоинств стоит отметить:
- Безболезненность
- Неинвазивность
- Отсутствие необходимости в специальной подготовке
- Отсутствие лекарственной нагрузки на организм пациента
- Быстрый положительный эффект
- Небольшая продолжительность сеанса (около 10 минут)
Список заболеваний, для лечения которых применяют ударно-волновую терапию, постоянно расширяется. УВТ показана пациентам с такими заболеваниями, как:
- Пяточная шпора (подробнее).
- Деформирующий остеоартроз.
- Грыжа межпозвоночного диска (подробнее).
- Подошвенный фасциит.
- Остеохондроз позвоночника.
- Плоскостопие.
- Плечелопаточный периартрит.
- Эпикондилит.
- Тендинит.
- Ожоги и язвы, в том числе на фоне сахарного диабета.
- Эректильная дисфункция (подробнее).
- Болезнь Пейрони (подробнее).
- Простатит (подробнее).
- Синдром хронической тазовой боли.
- Слабость тазовых мышц.
- Ишемическая болезнь сердца.
Кроме того, УВТ назначают во время реабилитационного периода после переломов, травм и проведенных операций. Область применения метода постоянно расширяется, поэтому не исключено, что в ближайшее время появятся новые показания.
Как и у подавляющего большинства других методов лечения, ударно-волновая терапия имеет ряд противопоказаний. УВТ не применяют, если у пациента отмечаются новообразования в области воздействия, острые инфекционные заболевания, нарушение свертываемости крови, тромбоз сосудов. Также методика противопоказана беременным женщинам и людям с установленным кардиостимулятором. Следует отметить, что противопоказаний к УВТ не так много по сравнению с другими популярными методами лечения, поэтому этот недостаток можно считать условным.
Следует отметить, что лечение ударно-волновой терапией проводят курсами. Определенные улучшения можно заметить после первого сеанса, однако для достижения выраженного терапевтического эффекта потребуется пройти курс из 4-10 процедур.
Еще тесты
Ударная волна
Основная статья: Ударная волна
Большая часть разрушений, причиняемых ядерным взрывом, вызывается действием ударной волны. Ударная волна представляет собой скачок уплотнения в среде, который движется со сверхзвуковой скоростью (более 350 м/с для атмосферы). При атмосферном взрыве скачок уплотнения — это небольшая зона, в которой происходит почти мгновенное увеличение температуры, давления и плотности воздуха. Непосредственно за фронтом ударной волны происходит снижение давления и плотности воздуха, от небольшого понижения далеко от центра взрыва и почти до вакуума внутри огненной сферы. Следствием этого снижения является обратный ход воздуха и сильный ветер вдоль поверхности со скоростями до 100 км/час и более к эпицентру. Ударная волна разрушает здания, сооружения и поражает незащищенных людей, а близко к эпицентру наземного или очень низкого воздушного взрыва порождает мощные сейсмические колебания, способные разрушить или повредить подземные сооружения и коммуникации, травмировать находящихся в них людей.
Большинство зданий, кроме специально укрепленных, серьёзно повреждаются или разрушаются под воздействием избыточного давления 2160—3600 кг/м² (0,22—0,36 атм/0.02-0.035 МПа).
Энергия распределяется по всему пройденному расстоянию, из-за этого сила воздействия ударной волны уменьшается пропорционально кубу расстояния от эпицентра.
Защитой от ударной волны для человека являются убежища. На открытой местности действие ударной волны снижается различными углублениями, препятствиями, складками местности.
Оценка степени повреждения отдельно стоящих зданий
Под воздействием ударной волны здания и сооружения ведут себя как упругие колебательные системы. Расчетная оценка такого воздействия требует решения достаточно сложных динамических задач, связанных с описанием поведения упругих конструктивных элементов зданий и сооружений под воздействием ударных нагрузок, определяемых изменяющимися во времени и пространстве параметрами ударной волны. Возникающие в конструктивных элементах нагрузки зависят от параметров волны, характеристик объекта, его размеров и ориентации относительно фронта волны.
Наиболее точную оценку последствий воздействия ударной волны на конкретный объект позволяет получить эксперимент, проводимый на его макете с соблюдением правил подобия. Однако применение экспериментальных методов оценки далеко не всегда возможно.
Накопленный опыт исследования объектов, подвергавшихся воздействию взрывов, и результатов экспериментов с макетами выявил ряд закономерностей, позволяющих упрощенными методами оценивать возможные ожидаемые последствия воздействия взрывов на здания и сооружения. Ниже будут рассмотрены два метода: по допустимому давлению при взрыве и по диаграмме разрушения объекта.
По допустимому давлению при взрыве
Избыточные давления, при которых наступают различные степени разрушений одного из возможных типов зданий, приведены в Таблице 5. При использовании таблицы следует иметь ввиду, что она соответствует ударной волне ядерного взрыва, т.е. учитывает воздействие на объект только избыточного давления и не учитывает поражающее действие импульса. Для других видов взрывов, например для взрывов конденсированных ВВ или ГВС, значения давлений, приведенных в таблице, должны быть увеличены в 1.5 раза и более в зависимости от мощности взрыва и после этого сопоставлены со значениями избыточного давления. рассчитанными по формуле (5). При использовании таблицы следует иметь ввиду, что результат оценки будет приблизительным, поскольку не учитывается действие импульса.
Госпошлина
LiveInternetLiveInternet
Головная ударная волна вокруг Земли
Гелиопауза
Сюда перенаправляется запрос «». На эту тему нужна .
Гелиопауза — это граница между гелиосферой и межзвёздной средой. При приближении солнечного ветра к гелиопаузе скорость его резко уменьшается, приводя к формированию ударной волны.
Гелиопауза — теоретическая граница, на которой происходит окончательное торможение солнечного ветра. Его давление уже неспособно оттеснять межзвёздное вещество из Солнечной системы, и происходит перемешивание вещества солнечного ветра с межзвёздным.
Гипотезы
Согласно одной из гипотез, между головной ударной волной и гелиопаузой существует область, заполненная горячим водородом, называемая водородной стеной. Эта стена содержит межзвёздное вещество, сжатое взаимодействием с гелиосферой. Когда частицы, испускаемые Солнцем, сталкиваются с частицами межзвёздного вещества, они теряют свою скорость, преобразовывая кинетическую энергию в тепловую, что приводит к формированию области нагретого газа.
В качестве альтернативы предлагается определение, что гелиопауза — это магнитопауза, граница, ограничивающая солнечную магнитосферу, за которой начинается общегалактическое магнитное поле.
Данные наблюдений
В декабре 2011 аппарат «Вояджер-1» был примерно в 119 а.e. (17,8 млрд км) от Солнца и долетел до так называемого региона стагнации — последнего рубежа, отделяющего аппарат от межзвёздного пространства. Область стагнации представляет собой регион с довольно сильным магнитным полем (индукция резко возросла почти в два раза по сравнению с предыдущими значениями) — давление заряженных частиц со стороны межзвёздного пространства заставляет поле, создаваемое Солнцем, уплотняться. Кроме этого, аппарат зарегистрировал рост количества высокоэнергетических электронов (примерно в 100 раз), которые проникают в Солнечную систему из межзвёздного пространства.
В первой половине 2012 года «Вояджер-1» вышел на границу межзвёздного пространства. Датчики автоматической станции с января по начало июня зафиксировали рост уровня галактических космических лучей — высокоэнергетических заряженных частиц межзвёздного происхождения — на 25 %. Кроме того, датчики зонда зафиксировали резкое снижение количества заряженных частиц, исходящих от Солнца. Эти данные указали учёным, что «Вояджер-1» приближается к границе гелиосферы и вскоре выйдет в межзвёздное пространство.
В конце августа 2012 года датчики аппарата зафиксировали резкое снижение регистрируемых частиц солнечного ветра. В отличие от предыдущих подобных случаев, в этот раз тенденция к снижению сохранилась. В 2012 или 2013 году «Вояджер-1» вышел за пределы гелиосферы, в межзвёздное пространство.
Головные ударные волны вокруг звёздных объектов
Головные ударные волны вокруг быстродвижущихся звёзд. Изображения сделаны космическим телескопом Хаббл в период с октября по июль 2006 года. Источник — NASA
Головная ударная волна является общей чертой объектов испускающих мощный звёздный ветер или движущихся со сверхзвуковой скоростью через плотную межзвёздную среду.
Объект Хербига — Аро HH 47, снимок телескопа Хаббл. Отрезок обозначает расстояние в 1000 астрономических единиц (примерно 20 диаметров Солнечной системы).
Каждый объект Хербига-Аро, создаёт яркие головные ударные волны, которые видны в оптическом диапазоне. Они образуются, когда газ, выброшенный формирующимися звёздами, вступает во взаимодействие с близлежащими облаками газа и пыли на скоростях в несколько сотен километров в секунду.
Головные ударные волны также создают самые яркие и мощные звёзды: гипергиганты (например, Эта Киля), яркие голубые переменные, звёзды Вольфа — Райе и т. д.
Головная ударная волна очень часто сопутствует убегающим звёздам, которые движутся через межзвёздную среду со скоростями в десятки и сотни километров в секунду и сверхскоростным звёздам, которые движутся через межзвёздную среду со скоростями в сотни и тысячи километров в секунду.
Головная ударная волна также бывает результатом взаимодействия в двойной системе. Примером такой системы может быть BZ Жирафа (BZ Cam). Её блеск меняется непредсказуемым образом, и этот процесс сопровождается необычно мощным звездным ветром, который состоит из выбрасываемых звездой частиц. Звёздный ветер порождает гигантскую головную ударную волну, в результате движения двойной системы сквозь окружающий её межзвездный газ.
Солнечный ветер
Основные статьи: Солнечный ветер, межпланетная среда, межпланетное пространство
Солнечный ветер представляет собой поток частиц (ионизированных атомов солнечной короны) и полей, в частности, магнитных. По мере того как Солнце вращается, делая оборот за 27 суток, магнитное поле, переносимое солнечным ветром, принимает форму спирали. Земля при прохождении витков этой спирали взаимодействует с ней своим магнитным полем, что может приводить к магнитным бурям.
В марте 2005 года были опубликованы результаты измерений, произведённых SOHO. Они показали, что область пространства, заполненная солнечным ветром, не имеет точной осевой симметрии, а имеет слегка искажённую форму, скорее всего, под влиянием местного участка общегалактического магнитного поля.
Тактико-технические характеристики Фаустпатрона
Световое излучение
Основная статья: Световое излучение (поражающий фактор)
Самое страшное проявление взрыва — не гриб, а быстротечная вспышка и образованная ею ударная волна
Образование головной ударной волны (эффект Маха) при взрыве 20 кт
Разрушения в Хиросиме в результате атомной бомбардировки
Жертва ядерной бомбардировки Хиросимы
Световое излучение — это поток лучистой энергии, включающий ультрафиолетовую, видимую и инфракрасную области спектра. Источником светового излучения является светящаяся область взрыва — нагретые до высоких температур и испарившиеся части боеприпаса, окружающего грунта и воздуха. При воздушном взрыве светящаяся область представляет собой шар, при наземном — полусферу.
Максимальная температура поверхности светящейся области составляет обычно 5700-7700 °C. Когда температура снижается до 1700 °C, свечение прекращается. Световой импульс продолжается от долей секунды до нескольких десятков секунд, в зависимости от мощности и условий взрыва. Приближенно, продолжительность свечения в секундах равна корню третьей степени из мощности взрыва в килотоннах. При этом интенсивность излучения может превышать 1000 Вт/см² (для сравнения — максимальная интенсивность солнечного света 0,14 Вт/см²).
Результатом действия светового излучения может быть воспламенение и возгорание предметов, оплавление, обугливание, большие температурные напряжения в материалах.
При воздействии светового излучения на человека возникает поражение глаз и ожоги открытых участков тела, а также может возникнуть поражение и защищенных одеждой участков тела.
Защитой от воздействия светового излучения может служить произвольная непрозрачная преграда.
В случае наличия тумана, дымки, сильной запыленности и/или задымленности воздействие светового излучения также снижается.