Топ 10

Терраформирование Ганимеда

Ганимед в среднем удален на 1 070 400 км от Юпитера и тратит 7 дней и 3 часа на обход. Пребывает в приливном блоке. С радиусом в 2634.1 км – самый большой спутник в Солнечной системе, а масса – 1.4819 x 1023 кг, намекающая на присутствие водяного льда и силикатной породы.

Это также отличный кандидат для преобразования. Прежде всего он крупный, а его гравитация – 1.428 м/с2, что похоже на обстановку Луны. Этого хватает, чтобы справиться с проблемами мышечной атрофии и разрушения костей.

На спутнике есть магнитосфера, благодаря которой колонисты смогут спастись от космических лучей. Водяной лед поможет создать кислородную среду, а также предоставить питьевую воду. Можно повторить сценарий Европы и нагревать поверхность различными методами, что приведет к аналогичному водяному миру.

История

В 1610 году Галилео Галилей, наблюдая Юпитер в телескоп, открыл четыре наиболее крупных спутника — Ио, Европу, Ганимед и Каллисто, которые сейчас носят название «галилеевых». Они яркие и вращаются по достаточно удалённым от планеты орбитам, так что их легко различить даже в полевой бинокль. Галилей назвал спутники «Звездами Медичи» в честь своего покровителя Козимо II де Медичи, Великого герцога Тосканского:

Поскольку я, как первооткрыватель, должен назвать эти новые планеты, я желаю, в подражание великим мудрецам, поместившим среди звезд самых замечательных героев того времени, посвятить их светлейшему герцогу Козимо II де Медичи, великому герцогу Тосканскому.
(Галилео Галилей. «»).

Первенство в открытии спутников оспаривал немецкий астроном Симон Мариус, который позднее дал им названия, взяв имена из древнегреческих мифов.

Календарь ФСОМ 2021

Магнитное поле Юпитера

Магнитное поле Юпитера настолько огромно, что выходит даже за орбиту Сатурна и составляет около 650 000 000 км. Оно превышает земное почти в 12 раз, а наклон магнитной оси, составляет 11° относительно оси вращения.

Металлический водород, присутствующий в недрах планеты и объясняет наличие столь мощного магнитного поля. Он является отличным проводником и, вращаясь с огромной скоростью, образует магнитные поля. На Юпитере, как и на Земле, тоже имеются 2 магнитных инвертированных полюса. Но стрелка компаса на газообразном гиганте всегда показывает на юг.

Вокруг Юпитера, как и вокруг большинства планет Солнечной системы, существует магнитосфера — область, в которой поведение заряженных частиц, плазмы, определяется магнитным полем. Для Юпитера источниками таких частиц являются солнечный ветер и его спутник Ио.

Радиационные пояса

Юпитер обладает мощными радиационными поясами. При сближении с Юпитером «Галилео» получил дозу радиации, в 25 раз превышающую смертельную дозу для человека.

Радиоизлучение обладает огромной энергией. Поток электронов в радиационных поясах Юпитера может представлять серьёзную опасность для космических аппаратов ввиду большого риска повреждения аппаратуры радиацией. Вообще, радиоизлучение Юпитера не является строго однородным и постоянным — как по времени, так и по частоте.

Юпитер окружён ионосферой протяжённостью 3000 км.

Полярные сияния

На Юпитере образуются яркие устойчивые сияния вокруг обоих полюсов. В отличие от таких же на Земле, которые появляются в периоды повышенной солнечной активности, полярные сияния Юпитера являются постоянными, хотя их интенсивность меняется изо дня в день.

Размеры и положение полярных сияний также зависит от вращения многочисленных спутников Юпитера.

Большое рентгеновское пятно

Орбитальным телескопом «Чандра» в декабре 2000 года на полюсах Юпитера обнаружен источник пульсирующего рентгеновского излучения, названный Большим рентгеновским пятном. Главным образом оно получило распространение на северном полюсе планеты.

Причины этого излучения пока представляют загадку

«Ударный кулак»

Новой машина комплектовались отдельные тяжелые
танковые полки, которые при уже при формировании получали почетное наименование
гвардейских, то есть элитных. Каждый такой полк состоял их четырех рот и
включал 21 танк. Эти части были ударными кулаками советских танковых армий.

Первой операцией, в которой принимали участие ИС-2,
стала Проскуровско-Черновицкая операция марта-апреля 1944 года. И сразу же они
доказали свою ффективность.

«Танк стоял бортом к нам рядом с гумном. Эту машину
нам не доводилось прежде видеть на северном участке фронта. Мы невольно
вздрогнули, потому что танк был оснащен чрезвычайно длинной 122-мм пушкой», —
так описал первую встречу с «Иосифом Сталиным» танковый ас Кариус.

В наступлении ИС-2 двигались позади боевых порядков,
в 200-300 метрах от «тридцатьчетверок», уничтожая огнем танки противника и противотанковые
орудия. Они защищали фланги и отражали контратаки. Тяжелые машины часто использовали
при штурме сильноукрепленных опорных пунктов, дорожных узлов. В обороне «гвардейские
кувалды» выбивали атакующие танки.

Прекрасно ИС-2 проявили себя при штурме больших городов
в заключительный этап Великой Отечественной. Они гусеницами и огнем расчищали улиц,
уничтожали опорные пункты: нескольких выстрелов хватало, чтобы превратить здание
в братскую могилу для засевших в него немцев. Именно эти машины поддерживали пехоту
при штурме Рейхстага.

Всего с конца 1943 по 1945 год советская оборонная
промышленность выпустила 3395 тяжелых танков «Иосиф Сталин-2». На смену им в серию
были запущены более совершенные машины ИС-3. Но ИС-2 продолжал службу. В 1960-х
годах его модернизировали. Впоследствии им усилили укрепрайоны на
советско-китайской границе, где эти машины выполняли функции танковых огневых
точек.

Официально ИС-2 был снят с вооружения только в 1995
году.

Достоинства и недостатки

Поверхность спутника Ио

Замечательные цвета в вулканическом кратере Патера на спутнике Юпитера Ио, снимок космического корабля НАСА Галилео.

Ио имеет множество вулканов (около 400). Это наиболее геологически активное тело Солнечной системы. В процессе сжатия коры Ио образовалось около ста гор. Вершины некоторых, к примеру, Южная Боосавла, превышает пик Эвереста в два раза. На поверхности спутника располагаются обширные равнины. Поверхность его имеет уникальные свойства. Она содержит множество оттенков цветов: белого, красного, черного, зеленого. Такая особенность обусловлена регулярными потоками лавы, которые могут быть простираться до 500 километров. Ученые предполагают, что теплая поверхность планеты и возможность наличия воды делают возможным зарождения живой материи и дальнейшее ее обитание на спутнике.

Самый короткий день

Яблони

Современность

Благодаря наземным наблюдениям системы Юпитера к концу 1970-х годов было известно уже 13 спутников. В 1979 году, пролетая мимо Юпитера, космический аппарат «Вояджер-1» обнаружил ещё три спутника.

Начиная с 1999 года с помощью наземных телескопов нового поколения были открыты ещё 49 спутников Юпитера, подавляющее большинство которых имеют диаметр в 2—4 км.

После открытия Фемисто в 1975 году и Дии в 2000 году, сделанных наблюдений оказалось недостаточно для расчёта их орбит, и они считались потерянными, но были вновь идентифицированы спустя 25 и 12 лет, соответственно.

Спутникам с ретроградными орбитами традиционно присваивают названия, оканчивающиеся на букву «е». Соответственно ошибочными являются иногда встречающиеся транскрипции этих названий, оканчивающиеся на букву «а». Например, спутник Пасифе назван в честь персонажа греческой мифологии Пасифаи; однако название спутника должно писаться именно как «Пасифе», не совпадая в написании с именем персонажа.

Есть ли жизнь на Европе

Наличие жидкой воды еще не говорит о том, что на Европе есть жизнь, но это дает большую надежду. В океане вполне могут существовать микробы и бактерии, которые зародились в его недрах. Также не исключается возможность наличия жизни и под слоем льда – если это правда, то, скорее всего, организмы прикреплены к нему, как водоросли. Но так как океан очень холодный и чрезвычайно соленый, то вероятность образования там жизни крайне мала.

Но эту вероятность может заметно повысить кислород, находящийся в океане. Также не исключается возможность занесения некоторых микроорганизмов падающими метеоритами.

Несколько лет назад на Европе была обнаружена перекись водорода, которая может стать источником энергии для бактерий. Были найдены и следы некоторых глинистых минералов (скорее всего, занесенных метеоритами), что тоже повышает вероятность зарождения живых организмов.

Европа

7 Тритон

  • Диаметр: 2706 км
  • Спутник: Нептуна
  • Дата открытия: 10 октября 1846 г.
  • Период обращения: 5,88 суток (обратное движение)
  • Масса: 2,14 × 1022 кг
  • Ускорение свободного падения: 0,779 м/с2
  • Температура поверхности: −235 °C

Тритон — крупнейший спутник Нептуна, открытый английским астрономом Уильямом Ласселом 10 октября 1846 года. Седьмой по величине спутник Солнечной системы и единственный крупный спутник Солнечной системы с ретроградным (обратным) движением по орбите. Из-за ретроградного движения и схожести состава с Плутоном считается захваченным из пояса Койпера.

Спутник был назван в честь древнегреческого бога Тритона, сына Посейдона. Несмотря на то, что Уильям Лассел участвовал в спорах о названии тех или иных спутников планет (Гипериона, Ариэля, Умбриэля), он не дал Тритону названия. Впервые название «Тритон» упоминается в 1880 году в трудах Камиля Фламмариона, однако это название было принято много лет спустя. Тритон называли просто Спутником Нептуна вплоть до 1949 года, когда был открыт второй спутник планеты — Нереида.

Хотя Тритон обладает атмосферой, она настолько разряжена, что на поверхности спутника от нее нет никакого толка. Находиться здесь без особо защищенного скафандра — смерти подобно. Средняя температура на поверхности Тритона составляет -235 °C.

Измерение скорости света

Эксперимент Рёмера

В XVII веке ученые не имели точного представления о конечности скорости света, поэтому важно было экспериментально узнать, как он распространяется – мгновенно или все-таки нет. Спутники Юпитера смогли помочь решить эту задачу

Если бы световые волны от любых источников распространялись мгновенно, то расположение небесных тел на небе, зафиксированное наблюдателем, полностью бы соответствовало фактическому. Если же это излучение имеет конечную скорость, то реальная картина будет искажена за счет разной удаленности рассматриваемых объектов.

В 1675 году датчанин Оле Ремер, провел расчеты местоположения сателлитов Юпитера для двух случаев: первый – Земля и газовый гигант находятся по одну сторону от Солнца, второй – по разные. Выявив расхождения расчетов и наблюдений, он пришел к правильному выводу, что скорость света имеет конечное значение, но точно вычислить ее не смог по причине отсутствия в тот период времени точных данных по удаленности орбит Земли и Юпитера от Солнца.

Шерпы в сфере международной политики

Магнитное поле

ЗИЛ-157Д

ЗаметкиРедактировать

Происхождение Ганимеда

Ганимед очень стар, его возраст оценивается в 4.5 миллиардов лет, то есть он ровесник самой Солнечной системы и её планет. Сейчас есть теория, почему это так.

Планеты образовались из протопланетного облака газа и пыли, в котором постепенно образовывались сгустки вещества, в итоге ставшие планетами. Из такого сгустка – туманности образовался и Юпитер. Но в этой туманности шло образование и других космических тел – спутников.

Ганимед образовался недалеко от Юпитера, где газа было довольно много, и он был плотнее. Весь этот процесс сжатия сопровождался выделением тепла. Лёд таял, и каменистые нагретые части в итоге оказались в центре нового космического тела, образовав ядро, а более легкие вещества – вокруг него.

В итоге Ганимед получил горячее каменистое ядро, которое продолжает до сих пор выделять тепло. Оно не только до сих пор остывает, но и подогревается из-за приливного воздействия Юпитера и радиоактивного распада элементов. Это ядро отдаёт тепло ледяной мантии, и далее оно конвективным путём поднимается выше к поверхности. Благодаря радиоактивному распаду в ядре образовались такие вещества, как железо и сульфид железа.

Ядро постепенно остывает, хотя процесс этот очень медленный и длится уже миллиарды лет. Благодаря горячему ядру под поверхностью Ганимеда существует подлёдный океан, состоящий из жидкой воды.

Другие галилеевы спутники прошли другой путь эволюции. Например, Каллисто находится дальше от Юпитера, поэтому там туманность была гораздо беднее веществом. В итоге этот спутник при сжатии вещества остывал быстрее, чем образовывалось тепло. В нём не произошло полного формирования твёрдого ядра, и он больше похож на кусок льда с каменными породами. Хотя в его центре тоже образуется тепло из-за приливного воздействия Юпитера, радиоактивного распада и давления, но его меньше, чем у Ганимеда.

История открытия и наименования

Ганимед был открыт Галилео Галилеем 7 января 1610 года с помощью его первого в истории телескопа. В этот день Галилей увидел около Юпитера 3 «звезды»: Ганимед, Каллисто и «звезду», впоследствии оказавшуюся двумя спутниками — Европой и Ио (только на следующую ночь угловое расстояние между ними увеличилось достаточно для раздельного наблюдения). 15 января Галилео пришел к выводу, что все эти объекты на самом деле являются небесными телами, движущимися по орбите вокруг Юпитера. Галилей назвал четыре открытые им спутника «планетами Медичи» и присвоил им порядковые номера.

Французский астроном Никола-Клод Фабри де Пейреск предложил дать спутникам отдельные имена по именам четырёх членов семьи Медичи, но его предложение не было принято. На открытие спутника претендовал также немецкий астроном Симон Марий, который наблюдал Ганимед в 1609 году, но вовремя не опубликовал данные об этом. Марий попытался дать спутникам имена «Сатурн Юпитера», «Юпитер Юпитера» (это был Ганимед), «Венера Юпитера» и «Меркурий Юпитера», которые также не завоевали популярность. В 1614 году он вслед за Иоганном Кеплером предложил для них новые названия по именам приближённых Зевса (в том числе Ганимеда):

…Потом был Ганимед, красивый сын троянского царя Троса, которого Юпитер, приняв вид орла, похитил на небеса держа на спине, как сказочно описывают поэты… В третьих, из-за величественности света, Ганимед…

Однако название «Ганимед», как и наименования, предложенные Марием для других галилеевых спутников, практически не использовалось вплоть до середины 20 века, когда оно стало общеупотребительным. В большой части более ранней астрономической литературы Ганимед обозначен (по системе, введённой Галилео) как Юпитер III или «третий спутник Юпитера». После открытия спутников Сатурна для спутников Юпитера стала использоваться система обозначения, основанная на предложениях Кеплера и Мария. Ганимед — единственный галилеев спутник Юпитера, названный в честь фигуры мужского пола —  согласно ряду авторов, он (как и Ио, Европа и Каллисто) был возлюбленным Зевса.

По данным китайских астрономических записей, в 365 году до н. э. Гань Дэ обнаружил спутник Юпитера невооруженным глазом (вероятно, это был Ганимед).

[править] Исследование и колонизация

Открыт 7 января 1610 года Галилео Галилеем (однако, немецкий астроном Симон Марий наблюдал Ганимед ещё в 1609 году, но не опубликовал об этом сообщение; тот же Симон Марий в 1614 году предложил назвать спутник в честь мифического виночерпия Ганимеда).

В 1972 году группа индийских, английских и американских астрономов, работая в индонезийской обсерватории имени Боссы, сообщила об обнаружении у Ганимеда тонкой атмосферы.

Первые фотографии Ганимеда из космоса были сделаны американскими КА «Пионером-10», пролетевшим мимо Юпитера в декабре 1973 года, и «Пионером-11», пролетевшим в 1974 году. С их помощью им были получены более точные сведения о физических характеристиках спутника (к примеру, «Пионер-10» уточнил его размеры и плотность).

В 1979 году мимо спутника прошли американские космические аппараты «Вояджер-1» (в марте) на расстоянии 112 тысяч км и «Вояджер-2» (в июле) на расстоянии 50 тысяч км. Эти КА передали качественные снимки поверхности Ганимеда и провели несколько измерений. Например, уточнили размер спутника, оказалось, что Ганимед — самый большой спутник в Солнечной системе (ранее самым большим считался Титан).

С декабря 1995 года по сентябрь 2003 года систему Юпитера изучал американский КА «Галилео», и за это время 6 раз сближался с Ганимедом. В ходе самого близкого полета «Галилео» прошел в 264 км от поверхности спутника и передал о нём массу сведений, включая подробные фотографии. В 1996 году «Галилео» открыл у Ганимеда магнитосферу, а в 2001 году — подземный океан. Удалось построить относительно точную модель внутреннего строения Ганимеда. Кроме того, «Галилео» передал большое число спектров и обнаружил на поверхности Ганимеда несколько неледяных веществ.

В 2007 году американский КА «Новые горизонты» на пути к Плутону прислал фотографии Ганимеда в видимом и инфракрасном диапазонах, и предоставил топографические сведения и карту состава спутника.

Также, Ганимед изучается с помощью телескопов, в том числе космического телескопа «Хаббл».

2 мая 2012 года Европейское космическое агентство объявило о старте миссии Jupiter Icy Moons Explorer в 2022 году с прибытием в систему Юпитера в 2030 году. Одной из главных целей миссии будет исследование Ганимеда, которое начнется в 2033 году. На 2020 год запланирована миссия Europa Jupiter System Mission, составной частью которой, как сообщается, будет российский посадочный модуль «Лаплас». РФ, посредством привлечения Европейского космического агентства, намерена отправить на Ганимед посадочный аппарат «Лаплас-П» для поиска признаков жизни и для проведения комплексных исследований системы Юпитера в качестве характерного представителя газовых гигантов. По другим расчетам, солёный океан находится либо на глубине между 150 и 250 км, либо на 330 км ниже поверхности Ганимеда. Неопределенность вызвана тем, что океан располагается между слоями льда.

В пользу гипотетической колонизации в будущем спутника указывают на такие факты, как то, что Ганимед — самый большой спутник в Солнечной системе со сравнительно высокой гравитацией, и единственный спутник Юпитера, обладающий магнитосферой, способной защитить потенциальных колонизаторов от губительного воздействия радиации. Ганимед получает около 8 бэр излучения в день — почти в 7 и в 400 раз меньше чем в случае с Европой и Ио соответственно, но это все ещё высокий показатель для человека, который, возможно, сможет найти на спутнике источник воды и энергии, а также материал для строительства:

Таким образом, Ганимед может стать базой для учёных для изучения Юпитера и его спутников, и, возможно, для дальнейшего освоения более отдалённых от Земли объектов Солнечной системы. Нельзя исключать и возникновение добывающей промышленности.

Теоретически, на поверхности спутника может быть использован колесный и гусеничный транспорт для горнодобывающей и строительной техники, и рельсовый электротранспорт. Ввиду относительно невысокой гравитации может быть использован и реактивный способ передвижения для переброски каких-либо грузов.

Гравитация Ганимеда возможно позволит удерживать искусственно созданную атмосферу, состоящую из плотных газов.

Качество подготовки младших офицеров в гражданских учебных заведениях

История

В 1610 году Галилео Галилей, наблюдая Юпитер в телескоп, открыл четыре наиболее крупных спутника — Ио, Европу, Ганимед и Каллисто, которые сейчас носят название «галилеевых». Они яркие и вращаются по достаточно удалённым от планеты орбитам, так что их легко различить даже в полевой бинокль. Галилей назвал спутники «Звездами Медичи» в честь своего покровителя Козимо II де Медичи, Великого герцога Тосканского:

Поскольку я, как первооткрыватель, должен назвать эти новые планеты, я желаю, в подражание великим мудрецам, поместившим среди звезд самых замечательных героев того времени, посвятить их светлейшему герцогу Козимо II де Медичи, великому герцогу Тосканскому.
(Галилео Галилей. «»).

Первенство в открытии спутников оспаривал немецкий астроном Симон Мариус, который позднее дал им названия, взяв имена из древнегреческих мифов.

История

В 1610 году Галилео Галилей, наблюдая Юпитер в телескоп, открыл четыре наиболее крупных спутника — Ио, Европу, Ганимед и Каллисто, которые сейчас носят название «галилеевых». Они яркие и вращаются по достаточно удалённым от планеты орбитам, так что их легко различить даже в полевой бинокль. Галилей назвал спутники «Звездами Медичи» в честь своего покровителя Козимо II де Медичи, Великого герцога Тосканского:

Поскольку я, как первооткрыватель, должен назвать эти новые планеты, я желаю, в подражание великим мудрецам, поместившим среди звезд самых замечательных героев того времени, посвятить их светлейшему герцогу Козимо II де Медичи, великому герцогу Тосканскому.
(Галилео Галилей. «»).

Первенство в открытии спутников оспаривал немецкий астроном Симон Мариус, который позднее дал им названия, взяв имена из древнегреческих мифов.

Читайте также

8 Титания

  • Диаметр: 1577 км
  • Спутник: Урана
  • Дата открытия: 11 января 1787 г.
  • Период обращения: 8,706 суток
  • Масса: 3,527 × 1021 кг
  • Ускорение свободного падения: 0,379 м/с2
  • Температура поверхности: −213 °C … −184 °C

Титания — крупнейший спутник Урана и восьмой по размеру спутник в Солнечной системе. Открыт Уильямом Гершелем 11 января 1787 года (через 6 лет после открытия им Урана). Назван в честь королевы фей из произведения Уильяма Шекспира «Сон в летнюю ночь». Четвёртый по отдалённости от Урана среди пяти его крупных спутников. Орбита Титании полностью находится внутри магнитосферы Урана.

Как и все крупнейшие спутники Урана, Титания, вероятно, образовалась из аккреционного диска, окружавшего планету во времена её формирования. Титания состоит из примерно равного количества камня и льда и, вероятно, дифференцирована на каменное ядро и ледяную мантию. На их границе, возможно, есть слой жидкой воды.

Единственные имеющиеся изображения Титании крупным планом были получены «Вояджером-2» во время исследований системы Урана в 1986 году. Никакой другой космический аппарат никогда не посещал Уран или Титанию. Концептуальные проекты для подобных миссий в настоящее время рассматриваются.

Поверхность Каллисто

Поверхность этого спутника сплошь покрыта кратерами разных размеров. Пожалуй, здесь больше кратеров, чем где бы то ни было ещё в Солнечной системе. На каждый древний кратер накладывается несколько более молодых, разрушающих его.

Поверхность Каллисто отличается по цвету – там есть светлые и тёмные области, но они смешиваются между собой. В основном поверхность представлена равнинами, на которых разбросаны кратеры. Светлые области, как считают учёные, представляют собой выбросы льда после ударов метеоритов. Тёмные области – скальная порода, пыль и прочие минеральные элементы.

На Каллисто есть пара огромных образований. Первая – Вальхалла. Это кольцевой бассейн в 1800 км в поперечнике. У него есть яркий центр диаметром 600 км, от которого расходятся концентрические кольца.

Кратер Вальхалла и его кольцевая структура на Каллисто.

Другая такая структура называется Асгард и она чуть меньше – диаметр колец достигает 1600 км.

Есть вполне правдоподобна гипотеза, что каждый такой кольцевой бассейны образовался из-за удара очень крупного тела. Кольцевая структура – результат волнообразных разломов литосферы, которая лежит на жидком основании – ведь под ней предположительно находится подлёдный океан. Удар такой силы вполне мог вызвать такое гидравлическое воздействие снизу.

Особенность поверхности Каллисто – несмотря на огромное количество кратеров, рельеф там довольно сильно сглажен благодаря эрозии. Дело в том, что на освещённой Солнцем стороне происходит постепенная сублимация льда – его испарение. А так как льда там очень много, валы кратеров и другие неровности постепенно разрушаются. Поэтому там случаются обвалы и оползни.

Есть версия, что именно благодаря такой активной эрозии на поверхности Каллисто практически не встречаются небольшие кратеры диаметром до 1 км. Вместо них есть много холмов и впадин – скорее всего это всё, что остаётся после сглаживания таких мелких кратеров. На месте валов остаются холмы, а на месте самого кратера – впадина, а переходы между ними постепенно сглаживается.

Благодаря сублимации льда его количество на поверхности постепенно уменьшалось, поэтому поверхность Каллисто имеет много тёмных областей – это просто минеральная порода, в которой нет ничего, что может улетучиться. Она входила в состав грязного льда, пока сам лёд не испарился. Эта порода покрывает собой большие области, препятствуя дальнейшему испарению льда, который находится под ней.

Обнаружение и имя

В январе 1610 года все четыре спутника заметил Галилей при помощи усовершенствованного телескопа. Тогда ему показалось, что эти светлые пятна отображают звезды, но потом он понял, что видит первые луны в чужом мире.

Ледяной спутник Юпитера – Европа

Имя досталось в честь финикийской дворянки и любовницы Зевса. Она была ребенком короля Тира и позже станет королевой Крита. Наименование предложил Симон Марий, который заявлял, что нашел луны самостоятельно.

Телескоп Галилея с рукописной отметкой увеличительной силы объектива

Галилео отказался использовать это имя и просто пронумеровал спутники римскими цифрами. Предложение Мария возродилось лишь в 20-м веке и обрело популярность и официальный статус.

Обнаружение в 1892 году Альматеи сместило Европу на 3-е место, а находки Вояджера в 1979-м – на 6-е.

Навигация

Цена нового и б/у

Ссылки

1 Ганимед

  • Диаметр: 5268 км
  • Спутник: Юпитера
  • Дата открытия: 7 января 1610 г.
  • Период обращения: 7,154 суток
  • Масса: 1,482 × 1023 кг
  • Ускорение свободного падения: 1,428 м/с2
  • Температура поверхности: −203 °C … −121 °C

Ганимед — один из галилеевых спутников Юпитера, седьмой по расстоянию от него среди всех его спутников и крупнейший спутник в Солнечной системе. Его диаметр равен 5268 километрам, что на 2 % больше, чем у Титана и на 8 % больше, чем у Меркурия. При этом масса Ганимеда составляет всего 45 % массы Меркурия, но среди спутников планет она рекордно велика. Луну Ганимед превышает по массе в 2,02 раза. Совершая оборот вокруг Юпитера примерно за семь дней, Ганимед участвует в орбитальном резонансе 1:2:4 с двумя другими его спутниками — Европой и Ио.

Ганимед открыл Галилео Галилей, который увидел его 7 января 1610 года. Вскоре Симон Марий предложил назвать его в честь виночерпия Ганимеда. Первым космическим аппаратом, изучавшим Ганимед, стал «Пионер-10» в 1973 году. Намного более детальные исследования провели аппараты программы «Вояджер» в 1979 году. Космический аппарат «Галилео», изучавший систему Юпитера начиная с 1995 года, обнаружил подземный океан и магнитное поле Ганимеда. В 2012 году Европейское космическое агентство одобрило новую миссию для исследований ледяных спутников Юпитера — JUICE; её запуск планируется на 2022 год, а прибытие в систему Юпитера — на 2030 год.

Ганимед является единственным спутником в Солнечной системе, обладающим собственным магнитным полем. Благодаря этому над его полярными областями можно очень часто наблюдать северные сияния. Помимо этого, есть подозрения, что под поверхностью Ганимеда может скрываться жидкий океан. Спутник обладает разряженной атмосферой, в состав которой входит кислород. И хотя его крайне мало для поддержания той жизни, которую мы знаем, потенциал для терраформирования у спутника имеется.

Нравится

Комментарии:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector