Кто изобрёл ракету?

Предыстория

Вторая мировая, вопреки чаяниям миллионов людей, миром не закончилась. Началось противостояние Западного (во главе с США) и Восточного (СССР) блоков – сначала за доминирование в Европе, а затем во всем мире. Разразилась так называемая «холодная война», в любой момент грозившая перерасти в горячую стадию.

С созданием атомного оружия встал вопрос о наиболее быстрых способах его доставки на огромные расстояния. Советский Союз и США сделали ставку на разработку ядерных ракет, способных в считанные минуты нанести удар по противнику, находящемуся на другом краю Земли. Однако параллельно стороны вынашивали амбициозные планы освоения ближнего космоса. В результате была создана ракета «Восток», Гагарин Юрий Алексеевич стал первым космонавтом, а СССР захватила лидерство в ракетной сфере.

Конструкция ПКК

Пилотируемая ракета «Восток» (Гагарин в качестве пилота) состояла из спускаемого аппарата в виде сферы наружным диаметром 2,4 метра и отделяемого приборно-агрегатного отсека. Теплозащитное покрытие спускаемого аппарата имело толщину от 30 до 180 мм. В корпусе предусмотрены входной, парашютный и технологический люки. В спускаемом аппарате находились системы электропитания, терморегулирования, управления, жизнеобеспечения и ориентации, а также ручка управления, средства связи, пеленгации и телеметрии, пульт космонавта.

В приборно-агрегатном отсеке располагались системы управления и ориентации движения, энергопитания, УКВ-радиосвязи, телеметрии, программно-временное устройство. На поверхности ПКК размещались 16 баллонов с азотом для использования системой ориентации и кислородом для дыхания, холодные навесные радиаторы с жалюзи, датчики Солнца и двигатели ориентации. Для схода с орбиты предназначалась тормозная двигательная установка, созданная под руководством А. М. Исаева.

Обитаемый модуль состоит из:

  • корпуса;
  • тормозного двигателя;
  • катапультируемого кресла;
  • 16 газовых баллонов системы жизнеобеспечения и ориентации;
  • теплозащиты;
  • приборного отсека;
  • входного, технологического и служебных люков;
  • контейнера с пищей;
  • комплекса антенн (ленточных, общей радиосвязи, системы командной радиосвязи);
  • кожуха электроразъемов;
  • стяжной ленты;
  • системы зажигания;
  • блока электронной аппаратуры;
  • иллюминатора;
  • телевизионной камеры.

Выход на гиперзвук

С 1930-х годов идут исследования гиперзвукового полета, то есть полета на скоростях, превышающих скорость звука в 5 и более раз. Не менее четырех десятилетий идут работы над гиперзвуковыми управляемыми ракетами. Резкое сокращение времени полета способствует преодолению современной и даже существующей пока только в разработках ПВО/ПРО, поражению маневренных целей в глубине обороны противника. Гиперзвуковые ракеты преодолевают «высотобоязнь» — высоты полета возвращаются к 10—30 км.

В 1997 году НПО «Радуга» представило гиперзвуковой экспериментальный летательный аппарат Х-90 со складным треугольным крылом дальностью полета до 3 000 км, маршевым гиперзвуковым прямоточным воздушно-реактивным двигателем. Для выхода на сверхзвуковой режим и запуска маршевого двигателя используется твердотопливный ускоритель. А ведь это старая уже разработка, едва не похороненная «постперестроечным» периодом. Неудивительны признания зарубежных специалистов, что в работах над гиперзвуковыми аппаратами они используют ряд советских разработок.

Гиперзвуковой «экспериментальный летательный аппарат» Х-90, Россия. Длина — 12 м. Дальность пуска — 3 000 км, скорость полета — 4—5М   В США с 1998 года реализуется программа ARRDM по созданию гиперзвуковых ракет класса «воздух-земля» и «корабль-земля». Согласно расчетам, ракета со скоростью 8М тех же размеров, что и AGM-86, пролетит 1 400 км всего за 12 минут, а при столкновении с целью обеспечит большие глубину проникновения и разрушительное действие.   «Крыла» в строгом значении этого слова у такой ракеты уже может и не быть. На этих скоростях хватает подъемной силы, действующей на корпус, которому придается соответствующий профиль. Так, корпус прототипа ракеты фирмы «Боинг» выполнен по схеме «волнолет» — для создания подъемной силы используется поток за ударной волной, порождаемой при гиперзвуковом полете. Рассматриваются комбинированные двигательные установки (в СССР ракету Х-31 с комбинированным прямоточным двигателем создали уже в 1980-е годы), установки изменяемого цикла — ракетно-прямоточные, турбопрямоточные. Высокие скорости способствуют реализации и такой идеи, как ионизация обтекающего ракету потока воздуха, электромагнитное управление потоком и создание плазменного шлейфа, снижающего заметность ракеты.   Займут ли гиперзвуковые аппараты место в ряду стратегических крылатых ракет или станут маневрирующими боеголовками баллистических ракет — вопрос недалекого будущего. В любом случае поиски нового облика крылатых ракет большой дальности идут весьма активно.

Эволюция и будущее

Атлантида Бермудского треугольника

Классификация ракет РФ

Боевые ракеты представляют собой непилотируемые летательные устройства, доставляющие к цели поражающие средства полетом на реактивном двигателе.

Различают пять классов ракет:

  • земля-земля;
  • земля-воздух;
  • воздух-земля;
  • воздух-воздух;
  • воздух-поверхность.

В свою очередь, выделяют различные типы ракет земля-земля:

  • по траектории полета — баллистические и крылатые;
  • по предназначению — тактические, оперативно-тактические и стратегические;
  • по дальности.

Земля-земля

Российские ракеты земля-земля запускаются с ракетных комплексов (РК), расположенных в шахтах, на земном рельефе или на кораблях, и предназначены для поражения наводных, наземных и заглубленных в землю целей.

Пуски таких ракет возможны как с неподвижных сооружений, так и с передвижных самоходных либо буксируемых установок.

Ранее на вооружении ракетных войск состояли в основном неуправляемые ракетные снаряды (НУРС). Новые ракеты земля-земля создают и производят управляемыми, снабженными аппаратурой, регулирующей их полет и обеспечивающей достижение цели.

Земля-воздух

Зенитно-ракетный комплекс С-400

Класс земля-воздух объединяет зенитные управляемые ракеты (ЗУР), рассчитанные на уничтожение воздушных целей, в основном боевой и транспортной авиации противника.

По способу запуска и управления различают четыре вида ЗУР:

  • радиокомандные;
  • наводящиеся по радиолучу;
  • самонаводящиеся;
  • комбинированные.

Также ракеты земля-воздух различаются по аэродинамическим особенностям, дальности, высоте и скорости воздушных «мишеней».

Показательный пример российских ЗУР — зенитные комплексы с ракетами средней и большой дальности С-400, фигурирующие в скандале с планируемой поставкой Турции, вызвавшей бурные возражения со стороны США.

Воздух-земля

Воздух-земля — ракетные средства поражения наземных и заглубленных целей, находящиеся на вооружении бомбардировочной и штурмовой авиации. По предназначению и дальности классифицируются аналогично с ракетами земля-земля. По типам целей дополнительно выделяют противотанковые ракеты воздух-земля для ударов по вражеской бронетехнике и противорадиолокационные — для выведения из строя радиолокационных станций (РЛС).

Воздух-воздух

Ракеты воздух-воздух — вооружение российской истребительной авиации, созданное для уничтожения пилотируемых и беспилотных вражеских летательных аппаратов (ЛА).

По дальности бывают:

  • малой — для удара по визуально обнаруженной пилотом цели;
  • средней — для поражения цели на расстоянии до 100 километров;
  • большой — для запуска на расстояние свыше 100 км.

Системы наведения при пусках ракет воздух-воздух используются радиокомандные (в ракетах СССР К-5), активные и полуактивные радиолокационные (АРЛС — в Р-37, Р-77 и ПРЛС — в Р-27), инфракрасные (в ракетах Р-60 и Р-73).

Ракета воздух-воздух Р-27

Воздух-поверхность

Ракетами воздух-поверхность, которые не относятся к виду воздух-земля, является противокорабельное оружие.

Оно характеризуется:

  • сравнительно большой массой;
  • фугасным типом поражающего средства;
  • радиолокационным наведением.

Подробно о противокорабельных современных ракетах России см. ниже.

Sturmgewehr 44 — штурмовая винтовка Второй мировой войны: история появления на фронте, достоинства и недостатки

Первая космическая скорость

Первая космическая скорость — это скорость, с которой надо горизонтально запустить объект, чтобы он стал вращаться вокруг Земли по круговой орбите.

Чем больше высота, с которой мы запускаем объект, тем меньше эта скорость. Например, Международная космическая станция летает на высоте 400 км со скоростью 7,6 км/с, а Луна — на расстоянии 384 500 км от Земли со скоростью 1 км/с. «Нулевой» высоте соответствует скорость 7,9 км/с, что обычно и называют первой космической скоростью.

Точно так же Земля вращается вокруг Солнца почти по круговой орбите со скоростью ≈ 30 км/с. Это и есть первая космическая скорость относительно Солнца на таком расстоянии от него.

Если скорость спутника чуть больше первой космической для его высоты, его орбита будет эллипсом. Все спутники вокруг Земли и планеты вокруг Солнца движутся именно по эллипсам. И орбиты комет — тоже эллипсы, только очень вытянутые, так что кометы улетают по ним «в даль тёмную», лишь изредка возвращаясь к Солнцу «погреть бока».

Иными словами, первая космическая скорость — это минимальная скорость, при которой тело, движущееся горизонтально над поверхностью планеты, не упадёт на неё, а будет двигаться по круговой орбите.

Проект «Меркурий»

Вскоре после успешных полетов первых искусственных спутников Земли в американских СМИ вовсю рекламировалось создание пилотируемого космического корабля «Меркурий», даже называлась дата его первого полета

В этих условиях крайне важно было выиграть время, чтобы выйти победителем в космической гонке и одновременно продемонстрировать миру превосходство той или иной политической системы. В итоге запуск ракеты «Восток» с человеком на борту спутал амбициозные планы конкурентов

Разработка «Меркурия» началась в компании «Мак Доннел Дуглас» в 1958 году. 25 апреля 1961 года состоялся первый запуск беспилотного аппарата по суборбитальной траектории, а 5 мая – первый пилотируемый полет астронавта А. Шепарда – тоже по суборбитальной траектории продолжительностью 15 минут. Только 20 февраля 1962 года, спустя десять месяцев после полета Гагарина, состоялся первый орбитальный полет (3 витка продолжительностью около 5 часов) астронавта Джона Гленна на корабле «Френдшир-7». Для суборбитальных полетов использовалась ракета-носитель «Редстоун», а орбитальных – «Атлас-Д». К тому времени в активе СССР был суточный полет в космос Г. С. Титова на корабле «Восток-2».

История изобретения ракеты

Большинство историков считает, что изобретение ракеты относится ко временам китайской династии Хань (206 год до н. э.—220 н. э.), к открытию пороха и началу его использования для фейерверков и развлечений. При взрыве порохового снаряда возникала сила, которая могла двигать различные предметы. Позже по этому принципу были созданы первые пушки и мушкеты. Снаряды порохового оружия могли летать на далёкие расстояния, однако не были ракетами, поскольку не имели собственных запасов топлива, но именно изобретение пороха стало основной предпосылкой возникновения настоящих ракет. Описание летающих «огненных стрел», применявшихся китайцами, показывает, что эти стрелы были ракетами. К ним прикреплялась трубка из уплотненной бумаги, открытая только с заднего конца и заполненная горючим составом. Этот заряд поджигался, и затем стрела выпускалась с помощью лука. Такие стрелы применялись в ряде случаев при осаде укреплений, против судов, кавалерии.

В XIII веке вместе с монгольскими завоевателями ракеты попали в Европу. Известно, что ракеты применялись запорожскими казаками в XVI—XVII вв. В XVII веке литовский военный инженер Казимир Семенович описал многоступенчатую ракету.

В конце XVIII века в Индии ракетное оружие применялось в сражениях с британскими войсками.

В начале XIX века армия также приняла на вооружение боевые ракеты, производство которых наладил Уильям Конгрив (Ракета Конгрива). В то же время российский офицер Александр Засядко разрабатывал теорию ракет. Большого успеха в совершенствовании ракет достиг в середине позапрошлого века российский генерал артиллерии Константин Константинов. Попытки математически объяснить реактивное движение и создать более эффективное ракетное вооружение делал в России Николай Тихомиров в 1894 году.

Теорию реактивного движения создал Константин Циолковский. Он выдвигал идею использования ракет для космических полетов и утверждал, что наиболее эффективным топливом для них было бы сочетание жидких кислорода и водорода. Ракету для межпланетных сообщении он спроектировал в 1903 г.

Немецкий учёный Герман Оберт в 1920-е годы также изложил принципы межпланетного полёта. Кроме того, он проводил стендовые испытания ракетных двигателей.

Американский учёный Роберт Годдард в 1926 г. осуществил запуск первой жидкостной ракеты, в качестве топлива для которой использовались бензин и жидкий кислород.

Первая отечественная ракета называлась ГИРД-90 (аббревиатура «Группы изучения реактивного движения»). Ее начали строить в 1931 году, а испытали 17 августа 1933 года. ГИРДом в то время руководил С.П. Королев. Ракета взлетела на 400 метров и находилась в полете 18 секунд. Вес ракеты на старте был 18 килограммов.

В 1933 г. в СССР в Реактивном институте было завершено создание принципиально нового оружия — реактивных снарядов, установка для запуска которых позднее получила прозвище «Катюша».

В ракетном центре в Пенемюнде (Германия) была разработана баллистическая ракета А-4 с дальностью полёта 320 км. Во время Второй мировой войны 3 октября 1942 г. состоялся первый успешный запуск этой ракеты, а в 1944 г. началось её боевое применение под названием V-2.

Военное применение V-2 показало огромные возможности ракетной техники, и наиболее мощные послевоенные державы — США и СССР — также начали разработку баллистических ракет.

В 1957 г. в СССР под руководством Сергея Королёва как средство доставки ядерного оружия была создана первая в мире межконтинентальная баллистическая ракета Р-7, которая в том же году была использована для запуска первого в мире искусственного спутника Земли. Так началось применение ракет для космических полётов.

Кто изобрел ракету?

Точного ответа на этот вопрос человечество, скорее всего, не узнает никогда. Известен факт, что ещё до нашей эры греческий философ Архит Тарентский передвигал деревянную фигурку голубя под реактивным действием пара. Конечно, это изобретение было чисто практическим. Никто, даже сам изобретатель, понятия не имел, что заставляет её двигаться.

Первые попытки использования ракет для полётов

Следующее упоминание о подобии ракеты нашлось в летописях Древнего Китая, которые использовали примитивные ракеты для фейерверков. Один смельчак пытался соорудить летательный аппарат, закрепив на воздушных змеях несколько небольших ракет. Первый полёт закончился трагедией: изобретение взорвалось вместе с изобретателем.

Значительно позже уже в XV веке полёт удался турку Лагари Хасану Челеби. Он сумел не только благополучно взлететь на своём аппарате, но и вернутся на землю, спланировав на двух крыльях. Первое время ракеты в основном использовали для фейерверков. Их применение в качестве оружия было отмечено в конце XVIII века индийскими солдатами в сражении с британцами. Неразорвавшиеся ракеты были захвачены англичанами и после небезуспешного усовершенствования, они применялись в сражениях. Образцы тех ракет до сих пор хранятся в одном из британских музеев. 

Многоступенчатые ракеты

Идеи о ракетах с отделяемыми частями – многоступенчатых – высказывались ещё в Бельгии в XVI веке, но не получили должного развития. Эту теорию с целью создания ракеты, которая могла бы преодолеть земное притяжение и выйти в космос, развивал русский учёный Константин Эдуардович Циолковский в начале XX века.

Именно основываясь на его исследованиях, Королёв в годы войны сумел создать совершенно новый тип вооружения – «Катюши», которые внесли огромный вклад в победу над фашистами. Он же, развивая практическое использование идей Циолковского, сумел методом проб и ошибок спроектировать первые ракеты, сумевшие вывести на орбиту спутники и впоследствии человека. Немцы пытались создать реактивные ракеты, но они, в отличие русских, не догадались использовать в качестве топлива вместо спирта более дешёвый и производительный керосин.

Это интересно…

Современные учёные считают, что самое большое столкновение на Земле произошло 4,5 млрд. лет назад. Тогда планета, величиной с Марс, столкнулась с Землей, её обломки попали на нашу орбиту и Туманность Андромеды М 31- самая большая галактика Местной группы. А ещё, она самый отдалённый объект, который мы можем увидеть невооружённым глазом. Она удалена от Земли на расстояние в 2,5 млн. световых лет.

Технические характеристики

Первая и вторая ступени ракеты-носителя оснащены жидкостными ракетными двигателями РД-107А и РД-108А от НПО «Энергомаш» имени академика Глушко, а на третьей ступени установлен четырёхкамерный РД-0110 от КБ «Химавтоматики». Ракетным топливом служат жидкий кислород, являющийся экологически чистым окислителем, а также слаботоксичное горючее — керосин. Длина ракеты — 46,3 метра, масса на старте — 311,7 тонн, а без головной части — 303,2 тонны. Масса конструкции ракеты-носителя — 24,4 тонны. Компоненты топлива весят 278,8 тонн. Лётные испытания «Союза-2.1А» начались в 2004 году на космодроме Плесецк, и прошли они успешно. В 2006-м ракета-носитель произвела первый коммерческий полёт — вывела на орбиту европейский метеорологический космический аппарат «Метоп».

Нужно сказать, что у ракет разные возможности вывода полезной нагрузки. Носители есть лёгкие, средние и тяжёлые. Ракета-носитель «Рокот», например, выводит космические аппараты на околоземные низкие орбиты — до двухсот километров, а потому ей по силам нагрузка в 1,95 тонн. А вот «Протон» — тяжёлого класса, на низкую орбиту он может вывести 22,4 тонн, на геопереходную — 6,15, а на геостационарную — 3,3 тонны. Рассматриваемая нами ракета-носитель предназначена для всех площадок, которыми пользуется «Роскосмос»: Куру, Байконур, Плесецк, Восточный, и работает в рамках совместных российско-европейских проектов.

Советские ракеты-носители

После разгрома нацистской Германии между СССР и США началась гонка за обладание немецкими ракетными секретами.

Перед советскими ракетчиками была поставлена задача — воспроизвести немецкую А-4, но Королев понимал, что копирование довольно ненадежной ракеты фон Брауна в перспективе бессмысленно.

В 1953 г. приступив к работе над ракетой, способной доставить отделяемую головную часть массой 5 т на расстояние до 8 тыс. км, он твердо решил отказаться от немецкого «наследства» и разработать совершенно новую ракету, подобной которой еще не было. Несмотря на то, что военный заказ был рассчитан на новый вид ядерного оружия, у С. Королева появилась возможность создать ракету, которая могла бы вывести корабль в космос.

Поскольку двигателя, способного вывести такой груз на орбиту, не существовало даже в проектах, он предложил революционную конструкцию ракеты. Она состояла из четырех блоков первой ступени и одного — второй, соединенных параллельно. Такую систему назвали «пакетом». Причем, унифицированные двигатели всех 5 блоков начинали работать с земли. 15 мая 1957 г. состоялся первый запуск новой ракеты, названной Р-7. Дорога в космос была открыта. На основе базового проекта этой ракеты конструкторами были разработаны восемь различных модификаций ракет-носителей среднего класса, в том числе РН «Восток» и «Союз» для выведения на орбиту пилотируемых космических кораблей.

Ракета-носитель «Протон»

Рабочий внутри обтекателя PH «Протон»

В 1964 г. конструкторское бюро В. Челомея разработало ракету-носитель нового для космонавтики класса — тяжелого. Лунная и военная космические программы требовали вывода в открытый космос тяжелых объектов, что было не под силу старым ракетам. Таким двухступенчатым ракета-носителем стал УР-500, первый запуск которого был осуществлен в июле 1965 г. Новый РН вывел на орбиту космическую станцию «Протон-1», по названию которой позднее и получил свое наименование. Сразу после этого было принято решение о модернизации УР-500, в результате чего через 2 года появилась трехступенчатая ракета-носитель «Протон-К». Позднее появилась и четырехступенчатая версия «Протона». В зависимости от модификации он способен вывести до 20 т полезной нагрузки на орбиту высотой 200 км.

Глушко Валентин Петрович (1908-1989 гг.)

Глушко Валентин Петрович

Советский конструктор, основоположник отечественного жидкостного ракетного двигателестроения, под его руководством были созданы двигатели для ракет-носителей «Восток» и «Протон», генеральный конструктор многоразового ракетно-космического комплекса «Энергия — Буран».

Поделиться ссылкой

Модернизация

Ракета предельно модернизирована, здесь создана принципиально иная цифровая система управления, разработанная на новой отечественной элементной базе, с быстродействующей бортовой цифровой вычислительной машиной с гораздо большим объёмом оперативной памяти. Цифровая система управления обеспечивает ракету высокоточным выведением полезных нагрузок.

Кроме того, установлены двигатели, на которых усовершенствованы форсуночные головки первой и второй ступеней. Действует другая система телеизмерений. Таким образом повысилась точность выведения ракеты, её устойчивость и, разумеется, управляемость. Масса космической ракеты не увеличилась, а полезный выводимый груз стал больше на триста килограммов.

Монстр в космосе

Ракета «Сатурн-5» была изготовлена с использованием алюминия, полиуретана, асбеста, пробки и титана и многих других материалов. Она имела примерно в 4 раза большую грузоподъемность, чем другой космический монстр — Space Shuttle.

Весь пусковой комплекс «Сатурн-5» весил 2 800 000 кг на стартовой площадке. То есть в 16 раз больше самого крупного и тяжелого животного на планете Земля — ​​голубого кита. Вес которого достигает 177 тонн.

Эта гигантская ракета выходила в космос 13 раз, в период с 1967 по 1973 год. Кроме программы «Аполлон» ее использовали для вывода на орбиту космической станции Skylab.

И по сей день «Сатурн-5» остается самой большой, самой тяжелой и самой мощной ракетой, когда-либо летавшей в космос.

Доступность ссылки

Отличия ракеты Р-2 от Р-1

В чем же состояло конструктивное отличие ракеты Р-2 от Р-1? Основное – в отделении головной части от корпуса в конце активного участка полета, чем решалось множество задач: снижалось требование к прочности корпуса ракеты, так как исключалась необходимость в нем на пассивном участке траектории, где тепловые нагрузки были значительно больше, чем на активном участке; вышеуказанное, в свою очередь, позволяло применять алюминиевые сплавы вместо стали на баке горючего и использовать его несущим – как корпус, а также отказаться от теплозащиты.

Это выявило разительные достоинства новой конструктивной схемы: масса незаправленной ракеты Р-2 была только на 350 кг больше массы незаправленной ракеты Р-1, притом стартовый вес первой был на 7 тонн больше, чем достигалась дальность стрельбы 600 км, против 300 у ракеты Р-1.

Компоновка ракеты Р-2 предусматривала расположение приборного отсека непосредственно над хвостовым отсеком, а не возле головной части, как у ракеты Р-1. Это существенно облегчало обслуживание аппаратуры системы управления. Указанные работы были выполнены коллективом ракетчиков С. П. Королева.

Коллективом двигателистов под руководством Валентина Петровича Глушко была проведена работа по форсированию двигателя РД-100 ракеты Р-1 по тяге на 7 тонн и другие изменения, в результате для ракеты Р-2 был изготовлен новый двигатель РД-101, на треть мощнее и на четверть легче предшественника.

Сергей Павлович Королев – конструктор первых советских ракет

Для улучшения точности попадания система управления, коллективом Николая Алексеевича Пилюгина была дополнена системой боковой радиокоррекции, снижающей параллельный снос ракеты, к которому автономная система управления была нечувствительна. Для реализации радиокоррекции требовалось размещение за стартовой позицией на расстоянии 25-30 км от старта, специальной аппаратуры БРК контролировавших поведение ракеты в полёте. Радиопередатчик БРК работал в метровом диапазоне волн.

Его мощность передавалась через специальный антенный коммутатор на две директорные антенны, разнесенные на 100 м друг от друга. Коммутатор обеспечивал симметричное качание луча, относительно линии прицеливания. В крайних положениях сигнал модулировался разными частотами. Это позволяло бортовому приемнику ракеты определить направление отклонения, а системе управления дать сигнал на коррекцию траектории.

Изменение габаритов ракеты Р-2 по сравнению с Р-1, новая компоновка приборного отсека потребовали от коллектива В. П. Бармина разработки новой системы наземного оборудования, обеспечивающей мобильность и безотказность действия всех агрегатов…. В итоге, Р-2, хотя и базировалась на идее и наработках Р-1, на деле представляла собой совершенно новую ракету, отличную от прародителя по всем параметрам. На основе осмысления чужого опыта, советским ученым действительно удалось создать собственную ракету.

25 мая 1949 года на полигоне был впервые в СССР проведен вертикальный пуск экспериментальной ракеты Р-1А, с целью отработки для ракеты Р-2 принципов отделения головной части ракеты: определения характера изменения тяги двигателя после его выключения для выбора момента отделения головной части и расчета необходимой отталкивающей силы.

В головной части ракеты, кроме того, устанавливались два контейнера с научной аппаратурой для исследования параметров верхних слоев атмосферы и прохождения в них дециметровых и сантиметровых радиоволн. Контейнеры спасались при помощи парашютных систем. Всего было четыре пуска на высоту 110 и 210 км.

Ракета Р-2: первая ракета полностью «домашней» разработки созданная в СССР. При внешней схожести с Р-1, отличалась от неё почти каждой деталью

Конструкция ракеты-носителя

Для выведения корабля-спутника на орбиту вокруг Земли на базе МР Р-7 была разработана первая ракета «Восток» для гражданских целей. Ее летно-конструкторские испытания в беспилотном варианте начались 5 мая 1960 года, а уже 12 апреля 1961 года впервые состоялся полет человека в космос – гражданина СССР Ю. А. Гагарина.

Была задействована трехступенчатая конструкционная схема с использованием на всех ступенях жидкого топлива (керосин + жидкий кислород). Первые две ступени состояли из 5 блоков: одного центрального (максимальный диаметр 2,95 м; длина 28,75 м) и четырех боковых (диаметр 2,68 м; длина 19,8 м). Третья соединялась стержнем с центральным блоком. Также по бокам каждой ступени стояли рулевые камеры для маневрирования. В головной части монтировался ПКК (в дальнейшем – искусственные спутники), прикрытый обтекателем. Боковые блоки оборудованы хвостовыми рулями.

Популярное из последнего

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector