Ракетные двигатели
Содержание:
- Принцип работы турбовентиляторного двигателя
- Блок танк
- Разработки ядерных ракетных двигателей в СССР
- Пистолет-пулемет Шпагина
- Значение термина «реактивный»
- Прямоточные воздушно-реактивные двигатели
- Государственное устройство Бразилии
- Разработки ядерных ракетных двигателей в США
- Историческая справка
- Политические взгляды
- Ядерные ракетные двигатели (ЯРД)
- Отменить ответ
- Устройство
- ЭРД: полет на Марс возможен!
- Отклоняемый вектор тяги
- Как устроены ракетные двигатели (3 минуты чтения и все понятно)
- Главная
- Реактивный двигатель: мотор, подаривший людям небо
- Устройство реактивного двигателя
- Какой в 2021 году будет зарплата у контрактников служащих в российской армии
- Типы ПуВРД
Принцип работы турбовентиляторного двигателя
Турбовентиляторный двигатель технологически очень сложное изделие, но работающее по довольно простому и понятному принципу. Расскажем, о его устройстве и какие процессы и как в нём протекают. Сначала разберёмся с терминами. Слово турбовентиляторный произошло от английского turbofan, причём англоязычный мир имеет под словом turbofan абсолютно любой двухконтурный турбореактивный двигатель.
При этом они разделяют их с низкой и высокой степенью двухконтурности соответственно, а степень двухконтурности – это параметр, который показывает отношение расхода массы воздуха через внешний контур к расходу во внутреннем. Итак, неотъемлемое свойство турбовентиляторного двигателя высокая степень двухконтурности – для современных изделий от 4 и выше.
Чтобы как можно больше воздуха расходовать через внешний контур используется вентилятор большого диаметра, энергия для его вращения появляется за счёт работы внутреннего контура и в этом заключается суть работы турбовентиляторного двигателя, где с помощью вентилятора создаётся около 80% всей тяги.
Рассмотрим типичное устройство и как это работает. Турбовентиляторный двигатель имеет внешний и внутренний контуры. На входе в двигатель имеется вентилятор большого диаметра, который подаёт воздух в оба контура, устройство внутреннего контура подобно обычному турбореактивному двигателю, который состоит из компрессора, турбины, камеры сгорания и реактивного сопла.
Сначала воздух, немного увеличив давление, после вентилятора попадает в компрессор низкого давления, затем он попадает в компрессор высокого давления, который вращается в несколько раз быстрее. После прохождения обоих компрессоров, воздух, сжатый более чем в 30 раз и сильно нагретый от высокого давления попадает в камеру сгорания. Здесь он смешивается с топливом, которое подаётся с помощью форсунок и поджигается. Далее раскалённый газ с температурой около 1600 градусов и выше начинает совершать полезную работу.
Сначала он попадает в турбину высокого давления, которая заставляет вращаться, находящийся с ней на одном валу компрессор высокого давления. Затем, потратив часть энергии и снизив свою температуру, раскаленный газ попадает в турбину низкого давления, которая находится на одном валу с компрессором и вентилятором. Потеряв большую часть энергии, раскалённый газ попадает в сопло и совершает последнее полезное действие – создаёт реактивную тягу. Таков принцип работы внутреннего контура, который создаёт лишь 20% всей тяги вентиляторного двигателя.
Принцип работы внешнего контура. Турбина низкого давления, находящаяся на одном валу с вентилятором, заставляет его вращаться, воздух, пройдя через лопатки вентилятора и немного увеличив своё давление, проходит через спрямляющий аппарат, его неподвижные лопатки поворачивают поток воздуха в осевом направлении, заодно повышая его давление. Затем воздушный поток попадает в сопло, где создаётся реактивная тяга.
Вот и весь принцип работы вентиляторного двигателя. Разумеется, каждый конкретный двигатель имеет свои особенности и различия, больше всего они касаются устройства внутреннего контура, но схема исполнения всегда остаётся плюс минус одинаковой. Обычно разница заключается в количестве ступеней компрессора и турбины, также помимо двухвальной схемы используется и трёхвальная, когда вентилятор и компрессор низкого давления больше не связаны, в таком случае используется промежуточная турбина, которая вращает только компрессор низкого давления на отдельном валу.
Ещё один способ увеличения эффективности конструкции – это установка редуктора на валу, который соединяет турбину низкого давления и вентилятор, такое решение позволяет им работать на оптимальных для себя режимах. Устройство внешнего контура также может иметь заметные отличия. При относительно небольшой степени двухконтурности в двигателе может использоваться смешение потоков, где газ из обоих контуров попадает в единую камеру сгорания и покидает через общее сопло.
Но, такая схема не подходит для более габаритных двигателей с высокой степенью двухконтурности, так как масса двигателя значительно вырастет, поэтому практически во всех вентиляторных двигателях потоки не смешиваются и длина внешнего контура всегда меньше внутреннего. Вот собственно и всё – таков принцип и способы повышения эффективности работы турбовентиляторного двигателя.
Источник
Блок танк
Разработки ядерных ракетных двигателей в СССР
В СССР проектирование первых ядерных ракетных двигателей велось во второй половине 1950-х годов. Этими работами занимались КБ главных конструкторов А.М. Люльки, С.А. Лавочкина, В.М. Мясищева, М.М. Бондарюка, В.П. Глушко совместно с рядом научно-исследовательских институтов – НИИТП, ЦИАМ, ИАЭ, ВНИИНМ.
Уже летом 1959 года сотрудники НИИТП В.М. Иевлев и Ю.А. Трескин доложили о постановке эксперимента на реакторе ИГР, первый запуск которого состоялся в 1961-м. Конструкции совершенствовались, и в 1975-1989 гг. на реакторе ИВГ-1 была выполнена отработка тепловыделяющих сборок на ресурс в форсированном режиме при температурах до 3100 К и тепловых потоках 20 кВт/см3 (на порядок выше, чем в США).
А на стендовом реакторе ядерного двигателя минимальной размерности ИРГИТ проводились запуски при мощности до 60 МВт и температуре 2650 К. В отличие от американских российские ученые использовали более экономичные и эффективные испытания отдельных тепловыделяющих элементов в исследовательских реакторах.
Все это в 1970-1980-е годы позволило в КБ “Салют”, КБ химавтоматики, ИАЭ, НИКИЭТ и НПО “Луч” (ПНИТИ) разрабатывать различные проекты космических ядерных ракетных двигателей и ядерных энергодвигательных установок.
В КБ химавтоматики при научном руководстве НИИТП (за элементы реактора отвечали ФЭИ, ИАЭ, НИКИЭТ, НИИТВЭЛ, НПО “Луч”, МАИ) создавались ЯРД РД 0411 и ядерный двигатель минимальной размерности РД 0410 тягой 40 и 3,6 т соответственно. В результате были изготовлены реактор, “холодный” двигатель и стендовый прототип для проведения испытаний на газообразном водороде.
В отличие от американского, с удельным импульсом не больше 8250 м/с, советский ЯРД за счет более жаростойких и совершенных по конструкции тепловыделяющих элементов и высокой температуры в активной зоне имел этот показатель равным 9100 м/с.
Советский вариант ядерного двигателя (РД-0410) для космического корабля оказался эффективнее, чем американский. Но и у нас революции не случилось
Стендовая база для испытаний ЯРД объединенной экспедиции НПО “Луч” размещалась в 50 км юго-западнее г. Семипалатинск-21. Она начала работать в 1962-м. В 1971-1978 гг. на полигоне испытывались натурные тепловыделяющие элементы прототипов ЯРД. При этом отработанный газ поступал в систему закрытого выброса. Стендовый комплекс для полноразмерных испытаний ядерных двигателей “Байкал-1” находится в 65 км к югу от г. Семипалатинск-21.
С 1970 по 1988 год проведено около 30 “горячих” пусков реакторов. При этом мощность не превышала 230 МВт при расходе водорода до 16,5 кг/с и его температуре на выходе из реактора 3100 К. Все запуски прошли успешно и безаварийно.
Однако, не смотря на несколько лучший результат, чем в США, отечественные разработки ядерного ракетного двигателя на этом также были остановлены, а оборудование законсервировано. В России и в США исследователи в общем-то пришли к одному выводу – идея рабочая, но в текущих реалиях плохо реализуемая.
По большому счету ядерный ракетный двигатель опередил время – более совершенная база, более продвинутые технологи в будущем позволят вернутся к этой идеи с новыми силами. Пока же остается только мечтать о полетах к далеким планетам, также, как и полвека назад.
Плюсы ядерного реактивного двигателя:
- Значительно эффективнее жидкостного реактивного двигателя в некоторых диапазонах работы
- Значительно более компактный за счет отсутствия большого объема топлива
- Значительно более “долгоиграющий”, опять же за счет преимуществ ядерного топлива
Минусы ядерного реактивного двигателя:
- Скорость истечения реактивной струи, хотя и выше на порядок, чем у ЖРД, все равно слишком мала для серьезного “покорения” космоса
- Требует серьезной радиационной защиты
- В случае аварии происходит ядерная катастрофа. По причине сильной остаточной радиации исключен возврат или сброс ядерного ракетного двигателя на Землю.
Сравнение принципов работы жидкостного и ядерного реактивных двигателей
Пистолет-пулемет Шпагина
Значение термина «реактивный»
Если судить по корню этого слова, можно предположить, что в основе работы двигателя лежит какая-то реакция. Имеется ввиду не химическое окисление — оно проходит и в обыкновенных карбюраторынх двигателях. В случае реактивного двигателя действует такой же принцип, как у ракеты. В одно направление выбрасывается газовая струя под высоким давлением, толкая тело, реагирующее ускорением, направленным в противоположную сторону.
Первые реактивные самолёты
Первые шаги были совершены немецкими учёными, однако преуспели в этом направлении другие государства — Италия, США, Великобритания и Япония, на тот момент отстающая в вопросах технологического развития от других мировых стран. Первые самолёты с реактивными двигателями вызывали удивление тем, что у них отсутствовали винты, многие пилоты изначально не доверяли таким авиаконструкциям.
СССР также вели разработки в этом направлении, однако больше концентрировались на усовершенствовании имеющихся винтовых самолётов. Был разработан и построен самолёт Би-1, крайне несовершенный и ненадёжный. Азотная кислота проедала топливные баки, также имелись другие технические осложнения.
Штурмфогель
Германия вела активную разработку всех видов военной техники, стараясь применить новые открытия и технические решения, способные переломить ход войны и получить существенное преимущество над вооружёнными силами противников. Одним из этих направлений были реактивные самолёты.
В ходе этих разработок немцы построили первый самолёт с реактивным двигателям, поступивший на серийный выпуск. Этим самолётом был Мессершмит-262 или Штурмфогель. Эта авиамашина развивала скорость свыше 900 километров в час, что было невероятно для тех времён. Он оказался успешным средством для борьбы с тяжёлыми бомбардировщиками Б-17.
В какой-то момент с немецких верхов поступило странное указание — переоборудовать этот истребитель в бомбардировщик, что привело к тому, что самолёт не смог раскрыть своего потенциала.
Арадо
Этот самолёт также является немецкой разработкой. Его отличие от прошлого рассматриваемого самолёта в том, что он изначально проектировался как бомбардировщик. В ходе военных действий продемонстрировал прекрасные боевые качества — скорость в 750 километров в час и высота полёта в 10000 метров не оставляли зенитным орудиям никакого шанса подбить его. Истребители американцев и Великобритании не догнали его.
Помимо того, что Арадо сбрасывал бомбы, пусть и не слишком точно из-за высокой скорости, он также осуществлял фотосъёмку, выполняя функции разведки. Во время применения этих самолётов в боевых целях, немцы практически не несли потерь. Если бы они смогли построить большее количество этих единиц авиатехники, сражаться с ними было бы ещё сложнее.
Ю-287
Уже в последние годы ещё не закончившейся второй мировой войны США и СССР взаимно готовились к противостоянию друг с другом. С обоих сторон велись активные разработки реактивных двигателей для авиатехники, поскольку всем было ясно, что в случае ещё одной войны без их использования обойтись не удастся.
Прямоточные воздушно-реактивные двигатели
ПВРД – самый простой тип реактивного двигателя по своему устройству. В нем вообще нет движущихся частей. Повышенное давление, необходимое для работы, достигается за счет торможения встречного потока воздуха. Любой ПВРД состоит из трех компонентов:
В диффузоре уменьшается скорость потока воздуха и повышается его давление, затем в камере сгорания он нагревается за счет окисления топлива, после чего происходит расширение рабочего тела в сопле и возникает реактивная тяга. Существуют три вида ПВРД:
На сверхзвуковой скорости прямоточный двигатель весьма эффективен, при скорости в 3 Маха степень повышения давления вполне сравнимо с аналогичным показателем ТРД.
Гиперзвуковой прямоточный реактивный двигатель (ГПВРД) предназначен для полетов на скоростях выше 5 Махов. Сегодня созданием подобных силовых установок занимаются во многих странах мира, но они все еще остаются на уровне единичных прототипов.
Прямоточный реактивный двигатель неработоспособен на земле и малоэффективен на низких скоростях полета. Поэтому его нередко используют с различными разгонными устройствами: пороховыми ускорителями или же запуск ЛА с ПРВД производится с самолетов-носителей. Подобные ограничения определяют область возможного применения летательных аппаратов с ПВРД: обычно это боевые системы одноразового использования. Примером могут служить крылатые ракеты «Оникс» и «Брамос».
Государственное устройство Бразилии
Согласно Конституции 1988 года, Бразилия – это федеративная республика. Ее глава — Президент, которого избирают на 4 года. Исполнительная власть принадлежит Президенту, Вице-президенту и Кабинету министров в составе 15 министров с председателем.
Двухпалатный бразильский парламент называется Национальный Конгресс, он состоит из Сената (81 сенаторов) и Палаты депутатов (513 депутатов).
Основные политические партии – «Партия трудящихся», «Партия бразильского демократического движения», «Бразильская социал-демократическая партия», «Демократическая партия», «Прогрессистская партия» и «Партия республики».
Административно страна делится на 26 штатов и один федеральный округ с центром в Бразилиа.
Разработки ядерных ракетных двигателей в США
С 1955 года в Америке приступили к выполнению программы по созданию ядерных реакторов типа NERVA, предназначенных для космических ракетных двигателей. Отработка велась сразу на опытных полноразмерных реакторах без сопла – Kiwi. При этом тепловыделяющие элементы часто разрушались из-за трещин в защитном покрытии. В конце 1963 года была поставлена задача осуществить общую разработку технологии ЯРД для обеспечения в 2014-2016 гг. пилотируемого полета к Марсу.
До 1972 года прошли испытания 20 ядерных реакторов, в том числе система NRX-A6 в течение одного часа работы реактора на полной мощности. 28 запусков стендовых ЯРДов имели суммарную продолжительность около 4 ч. Испытания проходили на полигоне в штате Невада.
В одном из вариантов ЯРД NERVA предварительно подогретый в рубашке охлаждения сопла и корпуса реактора водород поступает в тепловыделяющие сборки, где за счет специально развитой поверхности теплообмена обеспечивается его нагрев до 2360 К. Часть горячих газов отбирается для привода турбины турбонасосного агрегата, что обеспечивает расход водорода до 40,7 кг/с и тягу 33,6 т при тепловой мощности реактора 1510 МВт и его массе 3400 кг.
Американский ядерный двигатель проекта NERVA. Не сказать, что неудачный, однако же космическую революцию не совершил
Однако в 1973 г., американскую программу ядерного ракетного двигателя закрыли. Хотя в целом работы были вполне успешные, но… слишком уж медленно они шли и слишком уж дорого стоили. Фактически, за 20 лет работы в рамках программы “Нерва-2”, к концу 1970-х предполагалось только создание ядерного ракетного двигателя с тягой около 30 тонн (при том, что “обычные” ракетные двигатели давали около 700 тонн), со скоростью истечения реактивной струи – 8.1 км/с. Это было больше, чем у обычных ракет, но все равно слишком мало для того, чтобы планировать серьезные космические перелеты.
Когда в условиях далеко не резинового даже у США бюджета, стали выбирать между ядерным ракетным двигателем и программой многоразовых космических челноков “Шаттл”, предпочтение отдали “Шаттлу”. Программа разработки ядерного ракетного двигателя для космических предметов была закрыта.
Историческая справка
Политические взгляды
Болсонару сторонник национализма и консерватизма, поддерживает военную диктатуру и репрессии, царствовавшие в период военного режима. Он агитирует применять казни и пытки, считая их законной практикой.
Болсонару не приемлет секуляризм, земельную реформу и легализацию наркотиков. Современная демократия и левые силы им критикуются. Он неоднократно делал расистские и гомофобные заявления, не признает права ЛГБТ, не поддерживает дискриминируемые группы.
Болсонару предпочитает либеральный курс в экономике. Одним из его вдохновителей является Дональд Трамп, а за крайне правые взгляды его даже прозвали тропическим Трампом. Президент США в свою очередь поддерживает его, выделяя усердие Болсонару в борьбе с пожарами в Амазонии.
Ядерные ракетные двигатели (ЯРД)
Этот тип РД в отличие от химических вырабатывает энергию не при сгорании топлива, а в результате нагревания рабочего тела энергией ядерных реакций. ЯРД бывают изотопными, термоядерными и ядерными.
История создания
Конструкция и принцип работы ЯРД были разработаны еще в 50-хх годах. Уже в 70-хх годах в СССР и США были готовы экспериментальные образцы, которые успешно проходили испытания. Твердофазный советский двигатель РД-0410 с тягой в 3,6 тонны испытывался на стендовой базе, а американский реактор «NERVA» должен был устанавливаться на ракету «Сатурн V» до того, как спонсирование лунной программы было остановлено. Параллельно велись работы и над созданием газофазных ЯРД. Сейчас действуют научные программы по разработке ядерных РД, проводятся эксперименты на космических станциях.
Таким образом, действующие модели ядерных ракетных двигателей уже есть, но пока ни один из них так и не был задействован вне лабораторий или научных баз. Потенциал таких двигателей довольно высокий, но и риск, связанный с их использованием, тоже немалый, так что пока они существуют только в проектах.
Устройство и принцип действия
Ядерные ракетные двигатели бывают газо-, жидко- и твердофазными в зависимости от агрегатного состояния ядерного топлива. Топливо в твердофазных ЯРД – это ТВЭЛы, такие же, как в ядерных реакторах. Они находятся в корпусе двигателя и в процессе распада делящегося вещества выделяют тепловую энергию. Рабочее тело – газообразный водород или аммиак – контактируя с ТВЭЛом, поглощает энергию и нагревается, увеличиваясь в объеме и сжимаясь, после чего выходит через сопло под высоким давлением.
Принцип работы жидкофазного ЯРД и его устройство аналогично твердофазным, только топливо находится в жидком состоянии, что позволяет увеличить температуру, а значит и тягу.
Газофазные ЯРД работают на топливе в газообразном состоянии. Обычно в них используется уран. Газообразное топливо может удерживаться в корпусе электрическим полем или же находится в герметичной прозрачной колбе – ядерной лампе. В первом случае возникает контакт рабочего тела с топливом, а также частичная утечка последнего, поэтому кроме основной массы топлива в двигателе должен быть предусмотрен его запас для периодического пополнения. В случае с ядерной лампой утечки не происходит, а топливо полностью изолировано от потока рабочего тела.
Преимущества и недостатки ЯРД
Ядерные ракетные двигатели имеют огромное преимущество в сравнении с химическими – это высокий показатель удельного импульса. Для твердофазных моделей его величина составляет 8000-9000 м/с, для жидкофазных – 14000 м/с, для газофазных – 30000 м/с. Вместе с тем, их использование влечет за собой заражение атмосферы радиоактивными выбросами. Сейчас ведутся работы по созданию безопасного, экологичного и эффективного ядерного двигателя, и главным «претендентом» на эту роль является газофазный ЯРД с ядерной лампой, где радиоактивное вещество находится в герметичной колбе и не выходит наружу с реактивным пламенем.
Отменить ответ
Устройство
Первый контур вмещает в себя компрессоры высокого и низкого давления, камеру сгорания, турбины высокого и низкого давления и сопло. Второй контур состоит из направляющего аппарата и сопла. Такая конструкция является базовой, но возможны и некоторые отклонения, например, потоки внутреннего и внешнего контура могут смешиваться и выходить через общее сопло, или же двигатель может оснащаться форсажной камерой.
Теперь коротко о каждом составляющем элементе ТРДД. Компрессор высокого давления (КВД) – это вал, на котором закреплены подвижные и неподвижные лопатки, формирующие ступень. Подвижные лопатки при вращении захватывают поток воздуха, сжимают его и направляют внутрь корпуса. Воздух попадает на неподвижные лопатки, тормозится и дополнительно сжимается, что повышает его давление и придает ему осевой вектор движения. Таких ступеней в компрессоре несколько, а от их количества напрямую зависит степень сжатия двигателя. Такая же конструкция и у компрессора низкого давления (КНД), который расположен перед КВД. Отличие между ними заключается только в размерах: у КНД лопатки имеют больший диаметр, перекрывающий собой сечение и первого и второго контура, и меньшее количество ступеней ( от 1 до 5).
В камере сгорания сжатый и нагретый воздух перемешивается с топливом, которое впрыскивается форсунками, а полученный топливный заряд воспламеняется и сгорает, образуя газы с большим количеством энергии. Камера сгорания может быть одна, кольцевая, или же выполняться из нескольких труб.
Турбина по своей конструкции напоминает осевой компрессор: те же неподвижные и подвижные лопатки на валу, только их последовательность изменена. Сначала расширенные газы попадают на неподвижные лопатки, выравнивающие их движение, а потом на подвижные, которые вращают вал турбины. В ТРДД турбин две: одна приводит в движение компрессор высокого давления, а вторая – компрессор низкого давления. Работают они независимо и между собой механически не связаны. Вал привода КНД обычно расположен внутри вала привода КВД.
Сопло – это сужающаяся труба, через которую выходят наружу отработанные газы в виде реактивного потока. Обычно каждый контур имеет свое сопло, но бывает и так, что реактивные потоки на выходе попадают в общую камеру смешения.
Внешний, или второй, контур – это полая кольцевая конструкция с направляющим аппаратом, через которую проходит воздух, предварительно сжатый компрессором низкого давления, минуя камеру сгорания и турбины. Этот поток воздуха, попадая на неподвижные лопасти направляющего аппарата, выравнивается и движется к соплу, создавая дополнительную тягу за счет одного только сжатия КНД без сжигания топлива.
Форсажная камера – это труба, размещенная между турбиной низкого давления и соплом. Внутри у нее установлены завихрители и топливные форсунки с воспламенителями. Форсажная камера дает возможность создания дополнительной тяги за счет сжигания топлива не в камере сгорания, а на выходе турбины. Отработанные газы после прохождения ТНД и ТВД имеют высокую температуру и давления, а также значительное количество несгоревшего кислорода, поступившего из второго контура. Через форсунки, установленные в камере, подается топливо, которое смешивается с газами, и воспламеняется. В результате тяга на выходе возрастает порой в два раза, правда, и расход топлива при этом тоже растет. ТРДД, оснащенные форсажной камерой, легко узнать по пламени, которое вырывается из их сопла во время полета или при запуске.
форсажная камера в разрезе, на рисунке видны завихрители.
Самым важным параметром ТРДД является степень двухконтурности (к) – отношение количества воздуха, прошедшего через второй контур, к количеству воздуха, прошедшего через первый. Чем выше этот показатель, тем более экономичным будет двигатель. В зависимости от степени двухконтурности можно выделить основные виды двухконтурных турбореактивных двигателей. Если его значение к<2, это обычный ТРДД, если же к>2, то такие двигатели называются турбовентиляторными (ТВРД). Есть также турбовинтовентиляторные моторы, у которых значение достигает и 50-ти, и даже больше.
В зависимости от типа отведения отработанных газов различают ТРДД без смешения потоков и с ним. В первом случае каждый контур имеет свое сопло, во втором газы на выходе попадают в общую камеру смешения и только потом выходят наружу, образуя реактивную тягу. Двигатели со смешением потоков, которые устанавливаются на сверхзвуковые самолеты, могут снабжаться форсажной камерой, которая позволяет увеличивать мощность тяги даже на сверхзвуковых скоростях, когда тяга второго контура практически не играет роли.
ЭРД: полет на Марс возможен!
Для полета на Марс требуется скорость 30 км/с. И здесь без ЭРД не обойтись.
Тогда вопрос: почему же мы сегодня не гуляем по Марсу, коль необходимый для этого двигатель существовал еще в 1932 году? Причин много. Вот хотя бы некоторые.
ЭРД способен работать только в пустоте космического пространства.
В обычной лаборатории вытекающая из него струя испарившегося металла смешивалась с воздухом и теряла скорость. Так, что даже тягу двигателя нельзя было достоверно измерить.
Лет через 20 подобные двигатели стали испытывать в специальных, очень дорогих вакуумных камерах.
Фото 3. Использования ЭРД делает возможным полет на Марс
Оказалось, что тяга подобных двигателей очень мала. Ее недостаточно даже для отрыва (только лишь двигателя!) от земли.
Тогда зачем же они нужны?
Они нужны для «неторопливого», длительного разгона в невесомости.
Смотрите. Если на тело массой 1 кг длительно действует сила 0,01 н (1 г), то через 28 часов оно приобретет скорость артиллерийского снаряда — 1 км/с, через 32 дня — 8 км/с (это первая космическая скорость), через 4 месяца — 30 км/с (третья космическая скорость), позволяющую лететь на Марс или вообще покинуть Солнечную систему.
Чтобы за 4 месяца набрать скорость 30 км/с, двигатель должен потреблять мощность… 300 Вт.
Не так много, в 3 раза меньше мощности утюга! Но у утюга есть розетка, а где взять розетку в космосе?
В качестве источника энергии для ракеты, оснащенной ЭРД, В.П. Глушко предложил использовать фотоэлементы.
Ракета, оснащенная такими двигателями, самостоятельно выйти в космос не может. Для старта должен применяться другой двигатель.
Но после выхода в космическое пространство «солнечная» ракета, оснащенная ЭРД, могла бы за несколько суток набрать такую скорость, которая недоступна для ракет любых других типов.
Подобная схема полета на Марс ныне рассматривается в российском проекте высадки космонавтов на Красную планету.
Отклоняемый вектор тяги
Реактивные двигатели обладают соплами самых разнообразных конфигураций. Самыми передовыми считаются подвижные сопла, размещенные на двигателях, у которых имеется отклоняемый вектор тяги. Они могут сдавливаться и расширяться, а также отклоняться на существенные углы — так регулируются и направляются непосредственно реактивные потоки. Благодаря этому воздушные судна с двигателями, имеющими отклоняемый вектор тяги, становятся чрезвычайно маневренными, потому что процессы маневрирования происходят не только вследствие действий механизмов крыльев, но также прямо самими двигателями.
Как устроены ракетные двигатели (3 минуты чтения и все понятно)
Главная
Реактивный двигатель: мотор, подаривший людям небо
Мы живем в эпоху реактивной авиации – это знакомо любому, даже не слишком сведущему в технических вопросах, человеку. Поршневой мотор с традиционным винтом, хотя и не совсем канул в Лету, но лидирующие позиции он сдал давным-давно. Подавляющее большинство современных самолетов – пассажирских, транспортных и военных – оснащены различными типами реактивных двигателей. Именно благодаря моторам подобно конструкции авиация превратилась в удобный, массовый и быстрый вид транспорта.
Реактивный двигатель (РД) – это двигатель, создающий силу тяги путем преобразования внутренней энергии топлива в кинетическую рабочего тела. Оно истекает из сопла со значительной скоростью, и, согласно закону сохранения импульса, толкает его в противоположную сторону. Это и есть принцип работы реактивного двигателя. Особенностью РД является его сочетание с движителем, усилие тяги он создает только за счет контакта с рабочим телом, без опоры или взаимодействия с иными объектами. Первым прототипом РД можно назвать шар Герона, созданный еще в I веке н. э.
В данном материале мы подробно коснемся конструкции устройств, относящихся к реактивным двигателям. Рассмотрим, как работает реактивный двигатель, представим их классификацию, а также основные особенности применения.
Устройство реактивного двигателя
основные детали реактивного двигателя
В начале турбины всегда стоит вентилятор, который засасывает воздух из внешней среды в турбины. Вентилятор обладает большой площадью и огромным количеством лопастей специальной формы, сделанных из титана. Основных задач две – первичный забор воздуха и охлаждение всего двигателя в целом, путем прокачивание воздуха между внешней оболочкой двигателя и внутренними деталями. Это охлаждает камеры смешивания и сгорания и не дает им разрушится.
Сразу за вентилятором стоит мощный компрессор, который нагнетает воздух под большим давлением в камеру сгорания.
Камера сгорания выполняет еще и роль карбюратора, смешивая топливо с воздухом. После образования топливо воздушной смеси она поджигается. В процессе возгорания происходит значительный разогрев смеси и окружающих деталей, а также объемное расширение. Фактически реактивный двигатель использует для движения управляемый взрыв.
Камера сгорания реактивного двигателя одна из самых горячих его частей – её необходимо постоянно интенсивное охлаждение. Но и этого недостаточно. Температура в ней достигает 2700 градусов, поэтому её часто делают из керамики.
После камеры сгорания горящая топливо-воздушная смесь направляется непосредственно в турбину.
Турбина состоит из сотен лопаток, на которые давит реактивный поток, приводя турбину во вращение. Турбина в свою очередь вращает вал, на котором “сидят” вентиллятор и компрессор. Таким образом система замыкается и требует лишь подвода топлива и воздуха для своего функционироваия.
После турбины поток направляется в сопло. Сопло реактивного двигателя – последняя, но далеко не по значению часть реактивного двигателя. Оно формирует непосредственно реактивную струю. В сопло направляется холодный воздух, нагнетаемый вентиллятором для охлаждения внутренних деталей двигателя. Этот поток ограничивает манжету сопла от сверхгорячего реактивного потока и ее дает ей расплавится.
Какой в 2021 году будет зарплата у контрактников служащих в российской армии
Типы ПуВРД
Кроме обычного ПуВРД в виде прямолинейного канала с входным клапаном, что описывались выше, есть и его разновидности: бесклапанный и детонационный.
Бесклапанный ПуВРД, как понятно по его названию, не имеет входного клапана. Причиной его появления и использования стал тот факт, что клапан является довольно уязвимой деталью, которая очень быстро выходит из строя. В этом же варианте «слабое звено» устранено, поэтому и срок службы мотора продлен. Конструкция бесклапанного ПуВРД имеет форму буквы U с концами, направленными назад по ходу реактивной тяги. Один канал длиннее, он «отвечает» за тягу; второй короче, по нему поступает воздух в камеру сгорания, а при горении и расширении рабочих газов часть их выходит через этот канал. Такая конструкция позволяет осуществлять лучшую вентиляцию камеры сгорания, не допускает утечки топливного заряда через входной клапан и создает дополнительную, пусть и незначительную, тягу.
без клаппаный вариант исполнения ПуВРД
без клапанный U-образный ПуРВД
Детонационный ПуВРД предполагает сжигание топливного заряда в режиме детонации. Детонация предусматривает резкое повышение давления продуктов горения в камере сгорания при постоянном объеме, а сам объем увеличивается уже при движении газов по соплу. В этом случае повышается термический КПД двигателя в сравнении не только с обычным ПуВРД, но и с любым другим двигателем. На данный момент этот тип моторов не используется, а находится на стадии разработок и исследований.
детонационный ПуРВД