Невесомость для космонавтов: помощь в работе или угроза жизни

Закон всемирного тяготения. Примеры из жизни

Движение Луны и земное притяжение

Из истории открытия закона известно, что Исаак Ньютон в своём исследовании опирался на движение Луны вокруг Земли. Связав силу тяжести, вынуждающую все незакреплённые объекты падать вниз, и неизвестную к тому моменту силу, удерживающую Луну на её орбите, учёный понял, что это одно и то же явление. Если бы притяжение не действовало на спутник, то он давным-давно свернул бы со своей наблюдаемой траектории и пролетел по касательной к ней в глубины космоса.

движение луны по орбите

Такое утверждение легко доказать на схематическом рисунке, приведённом выше. Пусть  – начальное положение Луны. Если бы на неё не действовала центростремительная сила, исходящая от Земли, то через некоторый промежуток времени спутник бы занял положение , однако наблюдение показывает, что небесное тело при движении приходит в точку , а после в  и так далее, что доказывает наличие притяжения.

Выводом своего закона Ньютон показал зависимость земного тяготения от квадрата расстояния. Так, на поверхности нашей планеты камень обладает ускорением свободного падения  м/с. Если же этот самый камень поместить на орбиту Луны, то он будет падать на Землю с ускорением  м/с.

Физический механизм гравитации

Ньютон был не полностью удовлетворен своей теорией, поскольку она предполагала взаимодействие между притягивающимися телами на расстоянии. Сам великий англичанин был уверен, что должен существовать некий физический агент, ответственный за передачу действия одного тела на другое, о чем он вполне ясно высказался в одном из своих писем. Но время, когда было введено понятие гравитационного поля, которое пронизывает все пространство, наступило лишь через четыре столетия. Сегодня, говоря о гравитации, мы можем говорить о взаимодействии любого (космического) тела с гравитационным полем других тел, мерой которого и служат возникающие между каждой парой тел гравитационные силы. Закон всемирного тяготения, сформулированный Ньютоном в вышеприведенной форме, остается верным и подтверждается множеством фактов.

Характеристики тел на других планетах Солнечной системы

Взаимное притяжение тел друг к другу, а именно спутников и планет, вокруг которых они вращаются, может помочь в определении ускорения свободного падения на любой планете Солнечной системы

Важно только знать массу и радиус исследуемого объекта и подставить их в формулу:. формула расчета ускорения свободного падения

формула расчета ускорения свободного падения

,

где G  – гравитационная постоянная,

M и  R – масса и радиус планеты.

Для более ясного понимания, результаты проще вывести в отношении к ускорению на Земле:

Планета g/g зем
Меркурий 0,38
Венера 0,9
Марс 0,38
Юпитер 2,55
Сатурн 1,12
Уран 0,97
Нептун 1,17
Плутон 0,01

Таким образом, масса тела, допустим, автомобиля, конечно же, не изменится, если доставить его в любую точку Вселенной. Однако простому человеку поднять его будет гораздо проще на Плутоне, чем на Земле, и совсем невозможно на Юпитере

Несмотря на дату открытия, закон всемирного тяготения астрономия активно использует и сейчас, предоставив ему статус одного из важнейших постулатов в этой научной области. Его применение позволяет объяснить множество явлений: от обычных, земных, до более глобальных, включающих в себя всю Вселенную.

Знакомьтесь: микрогравитация

Представьте себе, что вы одеты в скафандр и лежите на спине в летной кабине космического аппарата. Вы лежите на спине в течение нескольких часов, пока пилоты и центр управления полетами готовятся к запуску. Обычно, когда вы стоите прямо, сила тяжести тянет кровь вниз, поэтому целые бассейны ее собираются у вас в ногах. Однако, поскольку вы лежите на спине, кровь по-разному распределяется в вашем теле, в том числе накапливаясь и в голове, поскольку ваши ноги подняты. В голове немного тяжеловато, словно вы только что проснулись.

Ракетные двигатели зажигаются и вы чувствуете ускорение. Вас вдавливает в кресло, поскольку аппарат взлетает. Сила тяжести вместе с увеличением скорости корабля увеличивается в три раза (на некоторых американских горках можно испытать такой уровень ускорения). Ваша грудь сжимается, дышать становится немного трудно. Спустя восемь с половиной минут вы оказываетесь в космосе и начинаете испытывать совершенно другое ощущение: невесомость.

Правильный термин для невесомости — микрогравитация. Вы не невесомы, поскольку земная гравитация удерживает вас и летательный аппарат на орбите. Вы находитесь в состоянии свободного падения, словно только что прыгнули с самолета, за исключением того, что падаете горизонтально и никогда не упадете. Допустим, вы стоите на весах, и они показывают ваш вес, поскольку гравитация тянет вниз и вас, и весы. Поскольку весы находятся на земле, они отталкиваются вверх с равнозначной силой — и эта сила и есть ваш вес. Но если вы прыгнете со скалы, стоя на весах, и вы, и весы будете притягиваться гравитацией. Вы не будете давить на весы, и они не будут давить на вас. Ваш вес будет нулевым. Таков закон Ньютона.

Поскольку космический аппарат и все объекты в нем падают с одной скоростью — все, что не закреплено, плавает. Если у вас длинные волосы — они будут плавать вокруг лица. Если вы выльете воду из стакана — она соберется в большую сферическую каплю, которую можно будет разбить на меньшие капли. Галушки и конфеты сами будут заплывать вам в рот, если вы подтолкнете их по нужной траектории. Сидя в кресле, вы не будете знать, что сидите, поскольку ваше тело не будет давить на кресло. Если вы не будете держаться — вы уплывете. Более того, если вы не будете держаться за стену или пол рукой или ногой — вы не сможете сдвинуться с места — не от чего оттолкнуться. По этой причине в любом космическом аппарате всегда много поручней для рук и ног.

Главное — не упасть

Поскольку выше линии Кармана (условной границы космоса) атмосферы почти нет, то для того, чтобы космический корабль оказался на стабильной околоземной орбите, его ускоряют до достижения определенной скорости. После чего он начинает равномерно двигаться по орбите, все время падая на Землю. Но если такой корабль каким-то образом потеряет свою скорость, гравитация Земли получит над ним полный контроль. И он на самом деле упадет на Землю. Поэтому очевидно, что именно скорость является очень важным параметром для нахождения на стабильной орбите.

Итак, с наличием гравитации в космосе мы вроде бы разобрались. Но где-же все-таки тогда заканчивается гравитация Земли? На самом деле никакой четкой границы нет. Закон всемирного тяготения Ньютона говорит нам, что влияние гравитации уменьшается в зависимости от расстояния. Так что, гравитация Земли простирается в космос на бесконечные расстояния? Согласно закону всемирного тяготения Ньютона — да.

Но ее влияние совсем ничтожно даже на другие планеты нашей Солнечной системы. А уж о том, как влияет гравитация Земли на другие звезды, и говорить не приходится. На таких расстояниях ее можно считать равной нулю…

Три, два, один… старт!

На следующий день после своего 50-летия я поднялась на борт российской капсулы на территории России и полетела в космос. Запуск — это самое опасное, что мы делаем, но также и самое захватывающее. Три, два, один… старт! Я на себе почувствовала всю контролируемую мощь ракетных двигателей, когда они отрывали нас от Земли.

Играл в футбол, устроил взрыв и пошел работать в НАСА. В космосе я ощутил единство со всем человечеством

Мы летели все быстрее, быстрее и быстрее до тех пор, пока через восемь с половиной минут двигатели намеренно не остановились. Бац! И мы в невесомости. Полет и магия начинаются.

Дмитрий, Паоло и я кружим вокруг Земли на крошечном космическом корабле, осторожно приближаясь к космической станции. Это сложный танец на скорости 28 164 километра в час между нашей капсулой размером с автомобиль «Смарт» и космической станцией размером с футбольное поле

Мы прибываем, когда эти два корабля состыковываются с мягким стуком. Мы открываем люки, кое-как обнимаемся при отсутствии гравитации — и теперь нас шестеро. Теперь мы космическая семья, мгновенно стали одной семьей.

Применение закона всемирного тяготения в астрономии

Закон всемирного тяготения астрономия трактует точно так же, как и другие разделы физики, однако эта наука применяет его с более глубоким пониманием, чем просто притяжение двух объектов. Вывод Ньютона объяснил астрономам и учёным причину замкнутости орбит планет и окончательно разрушил представления о совершенных и несовершенных траекториях, царивших со времён Аристотеля, тем самым изменив вектор развития науки в сторону прогрессивных взглядов.

Благодаря догадке о всемирном притяжении люди сумели понять причину морских приливов и отливов, а также сделать предсказания на будущее о координатах расположения любой из планет Солнечной системы.

Одним из важнейших научных успехов, основанных на законе Ньютона, стало открытие Нептуна, его до последнего нельзя было увидеть в телескоп.

Отсутствие гравитации меняет нейронные связи

Ученые сделали фМРТ головного мозга одиннадцати космонавтам до и после полета, который длился в среднем шесть месяцев. Затем они сравнили данные томографии космонавтов с результатами добровольцев, которые не покидали Землю. Исследователей интересовали изменения в связях между зонами мозга, отвечающими за сенсомоторные функции — движение и восприятие положения тела. Для активизации этих зон использовалась стимуляция подошвы стоп, имитирующая походку.

На Земле восприятие пространства и положения тела регулирует вестибулярный аппарат — система мешочков и полукружных каналов во внутреннем ухе. Но в невесомости он работает со сбоями, так как для его работы необходима сила тяжести. Поэтому космонавты нередко испытывают головокружение и дезориентацию до тех пор, пока их тело не привыкнет к необычным условиям.

Выяснилось, что у космонавтов перестраиваются связи мозга, отвечающие за восприятие и движение. Чтобы компенсировать недостаток информации от органа равновесия, развивается вспомогательная система соматосенсорного контроля: мозг чаще обращается к зрительным и тактильным системам, чем к вестибулярному аппарату. Поэтому усиливаются нейронные пути, координирующие их работу. Так, фМРТ показало увеличение связи островковых долей с другими отделами. Островковые доли отвечают за интеграцию ощущений, поступающих из разных систем.

Что же касается связей мозжечка и вестибулярных ядер с полушариями, — в условиях земного притяжения эти структуры обеспечивают обработку ощущений, поступающих из вестибулярного аппарата. Ученые предполагают, что в космосе мозг тормозит активность этой системы, так как от нее поступает противоречивая информация об окружающем мире.

Это не первая попытка изучить влияние невесомости на мозг с помощью нейровизуализации. Более ранние исследования посвящены рискам для здоровья, с которыми сталкиваются космонавты.

Состав

Способы испытать чувство невесомости в теории и на практике

Чувство невесомости полноценно можно испытать в космосе, но для этого нужно выбрать эту профессию и долгие годы готовится. Однако ощущение невесомости можно испытать и на Земле, хоть и незначительное.

На Земле невесомость можно смоделировать следующим способом. В экспериментальных целях и для тренировки космонавтом создавали состояние невесомости до 40 секунд с помощью специального самолета, который имел воздействие только силы земного притяжения. Траектория движения самолета проходит по параболе. Такие ощущения сейчас можно испытать и на специальных тренажерах, в парках аттракционов. Суть заключается в том, что резко набирается высота и также резко потом сбрасывается, вызывая ощущение свободного падения, невесомости.

Подобные ощущения мы испытываем на рейсах гражданской авиации в период посадки самолета, а также в автомобиле, при резком перепаде движения сверху вниз.

Помимо этого, схожие ощущения можно получить, прыгая на батуте, находясь в воздухе от прыжка непосредственно перед падением вниз, в современных скоростных лифтах при резкой остановке на высоком этаже.

Сейчас существуют специальные симуляторы невесомости, в которых Вы можете испытать это ощущение на борту специально оснащенного для этих нужд самолета ИЛ – 76. Это специальная лаборатория, предназначенная для испытания перегрузок, в том числе космонавтами перед полетами в космос. Во время полета, резко набирается высота и на высоте 8-9 км пилот выключает мощность двигателей, тем самым, позволяя самолету двигаться по инерции. Как раз, когда сила тяжести становится равна силе инерции, достигается невесомость. Во время полета группа испытывает на борту самолета несколько таких ощущений невесомости. Стоимость такого полета индивидуальна и может быть совмещена с экскурсией, космическим питанием и многим другим.

Интересные факты о невесомости и гравитации

Что мы с Вами знаем о невесомости, как можем охарактеризовать это явление?

Неудобства.

В настоящее время явление невесомости полностью изучено и не вызывает большого количества вопросов. У космонавтов до полета длительный период проходит подготовка организма к невесомости, и несмотря на это, отсутствие силы тяжести приводит организм в достаточно большой стресс.

Основное нарушение при явлении невесомости наблюдается в изменении давления жидкости в организме, особенно крови. Помимо этого, отсутствует привычная нагрузка на опорно-двигательный аппарат, что вызывает дискомфорт. После доставки космонавта на космическую станцию, его организм некоторое время проходит период адаптации, несмотря на долгие месяцы подготовки перед полетом.

Влияние невесомости на организм

Обычно период адаптации организма проходит в течение 7-10 дней. В результате космонавты из-за отсутствия силы тяжести теряют в весе, снижается работоспособность, а также повышается общая утомляемость организма. Также может измениться соотношение элементов в тканях. После длительного пребывания в космосе человек может стать на несколько сантиметров вследствие невесомости. В результате может произойти защемления нервов, появиться различные боли мышечного и суставного характера.

Питание.

На сегодняшний день питание у космонавтов очень разнообразное. Рацион питания составляют сублимированные продукты, упакованные в тубы из алюминия. Практически все питание находится в виде пюре. Рацион и тару продумывают таким образом, чтобы избежать крошек и их попадания в глаза. Печенья делают небольшими, чтобы не кусать, и сверху покрывают оболочкой.

Поверхностное натяжение и угол смачивания

Поверхностным натяжением называется сила, испытываемая молекулами жидкости на поверхности (сильнее всего на границе газ – жидкость) и направленная в глубину объема жидкости. Наличие сил поверхностного натяжения делает поверхность жидкости похожей на упругую растянутую пленку.

При малых массах, благодаря действию сил поверхностного натяжения, жидкость также принимает форму, соответствующую минимальной поверхности. Да вы и сами видели примеры этого – капли воды имеют сферическую форму и не растекаются сами по себе. Это и есть поверхностное натяжение жидкости в действии.

Наверно, каждый из вас замечал, что после дождя на окне видны капли. С точки зрения физики граница, по которой капля соприкасается с поверхностью твердого тела называется поверхностью раздела фаз –жидкой и твердой.

Угол между поверхностью капли и твердой поверхностью называется углом смачивания. Если этот угол меньше 90˚, то капля растекается по поверхности. В таких случаях говорят, что жидкость хорошо смачивает поверхность. Если же этот угол больше 90˚, то капля “стягивается” в сплющенный, под давлением собственного веса, водяной шарик. Однако, если вы легонько надавите на него пальцем – он немедленно растечется в мини-лужицу. Всемирное тяготение “пересилит” поверхностное натяжение.

Если же две капли сольются в одну и их общий вес увеличится, они также потеряют шарообразную форму.

Если достаточно аккуратно положить на водную поверхность металлическую скрепку – она не утонет. А клопы-водомерки вообще научились обращать физику себе на польз и без проблем скользят по водной глади на своих ножках

Сила поверхностного натяжения жидкости

На Земле жидкость обычно течёт вниз.  В этом нет ничего удивительного. Все к этому привыкли.

А теперь представьте себе, что обычная вода летает, как мыльные пузыри, по комнате. Необычно? Но то что необычно на Земле, становится обычным явлением на её орбите. Происходит это из-за того, что в космосе в поведении жидкостей доминирует не гравитация планеты, а сила поверхностного натяжения. Образно говоря, жидкость, “предоставленная самой себе” в космосе, сразу же принимает форму с минимальной поверхностью, то есть форму шара.

Вода в невесомости ведет себя непривычно с земной точки зрения и собирается в аккуратные шарики

Волшебная сила невесомости

Пудовая гиря в невесомости (скажем, на международной космической станции – МКС) имеет массу ровно 16 килограмм. Ни одним граммом меньше чем 16 000 граммов.

Даже в невесомости масса пудовой гири – ровно 16 кг

Да-да! Именно так. Масса в невесомости – точно такая, как на Земле. Другое дело, что вес пудовой гири на МКС равен нулю. Но это вес, а масса – как была на Земле один пуд, так и на орбите не стала другой – ровно один пуд.

Дело в том, что масса тела, о которой идет речь, бывает двух видов:

  • инертная;
  • гравитационная.

Инертная масса отвечает за ускорения и замедления тела. А гравитационная определяет силу гравитационного притяжения между телами. Этот закон сформулировал еще Исаак Ньютон. Говоря своими словами – если с размаху ударить пудовой гирей по голове космонавта, то вмятина будет одинаковой, находится ли космонавт на земле или в космическом корабле. Здесь имеет значение инерционная масса. А вот если перестать держать рукой пудовую гирю на МКС, то она не падает вниз. Но вверх она тоже не взлетает. Если что-то удерживает гирю от падения, то она висит в воздухе. Здесь играет свою роль гравитационная масса. Образно говоря, гиря висит в атмосфере отсека МКС, потому, что «падает» вместе со всей космической станцией. Они обе (МКС и гиря) летят по орбитальной траектории вокруг Земли. Причем летят по одинаковой траектории. И, поэтому не двигаются друг относительно друга. Это и есть явление невесомости. Условие невесомости – свободное падение. Жидкость в невесомости не растекается по полу, как было бы при наличии силы тяжести, а собирается в более или менее правильные шары, за счет силы поверхностного натяжения этой жидкости.

Личная гигиена космонавтов

Космонавтов часто спрашивают о том, как на орбите с личной гигиеной. Оказывается, непросто. Космонавты очищают кожу в основном влажными салфетками. Но есть на МКС и специальная пластиковая душевая.

Обитатели станции рассказывали, что достаточно одного стакана воды, чтобы вымыться целиком — вся вода прилипает к телу. Голову моют специальным шампунем, который не нужно смывать. «Космическую» зубную пасту космонавтам приходится глотать. Одежду космонавты не стирают — они меняют её каждые несколько дней.

Памперсы изобрели вовсе не американцы, а наши, причем давным-давно и как раз для «космических» целей.

А вот АСУ (по-нашему – туалетная комната) работает по принципу пылесоса. Моча после «смывания» расщепляется на кислород и воду, после чего эти элементы вновь поступают в замкнутый цикл станции (увы, вода там многоразовая)… Твердые же остатки в специальных контейнерах выбрасываются в открытый космос.

Различия в поведении жидкости в космосе и на Земле

  • На Земле: поведение жидкостей определяется действием силы тяжести. В космосе: жидкостями управляет сила поверхностного натяжения.
  • На Земле: можно легко разделить капельку жидкость шарообразной формы. В космосе: для этого придется приложить немалые усилия.
  • На Земле: несмачиваемые жидкости не смачивают поверхность. В космосе: достаточно небольшого прикосновения несмачиваемой жидкости для того, чтобы смочить поверхность.
  • На Земле: если встряхнуть бутылку с какое-либо жидкостью, то жидкость вернется в исходное состояние. В космосе: водяные шарики могут вести себя как “упругие мячики”, неоднократно отскакивая от той же жидкости, из которой они состоят.

Итак, надеюсь вы смогли ознакомиться и понять разницу в поведении жидкостей в пределах Земли и в космосе.

Профилактика последствий

Альтернативой длительной и трудной реабилитации после космической экспедиции в отсутствии силы тяжести является постоянная и настойчивая профилактика неблагоприятных изменений в организме.

На орбите экипаж постоянно поддерживает физическую форму

В космическом полёте, когда отсутствует сила тяжести и вес невесомость обнуляет, космонавты постоянно занимаются физическими упражнениями, причём часто под нагрузкой. Например, пользуются бегущей дорожкой, будучи притянутыми к ней упругими резиновыми элементами, укрепленными на поясе.

Работа с эспандером хорошо укрепляет мышцы рук и плечевого пояса. Для укрепления мышц спины также используют упругие элементы, работающие на растяжение. Все эти упражнения способствуют укреплению сердечно-сосудистой системы, что тоже является очень хорошей профилактикой последствий длительного воздействия нулевой силы тяжести. Специально подобранный рацион обеспечивает необходимую перистальтику желудочно-кишечного тракта.

В длительном полете невесомость значение приобретает очень важное, но космонавты летают в отсутствие силы тяжести все дольше и дольше. В космосе космическая экспедиция может провести много месяцев

Рекордсмен по этой части – россиянин Валерий Поляков. Его полет проходил в 1994 и 1995 году. Поляков провел на станции «Мир» 438 суток. Это более 62 недель, более 14 месяцев. Нет предела совершенству!

Роль для жизни на Земле

Сила тяжести действует на все окружающие нас предметы:

  • всё, что мы подбрасываем вверх, в результате падает на землю;
  • спутник не улетает в открытый космос, а вращается вместе с планетой;
  • горные реки текут вниз; их движение невозможно повернуть вспять;
  • атмосфера вокруг Земли также удерживается притяжением;
  • осадки падают вниз, а не поднимаются в космос;
  • сила тяжести способствует образованию скелета у живых организмов.

Для возникновения жизни на Земле непременным условием является период вращения планеты вокруг своей оси, который составляет 23 часа 56 минут 4,1 секунды. Если бы Земля вращалась в 17 раз быстрее, то никакая сила тяжести не смогла бы удержать на месте воздух и воду. Все моря и океаны улетели бы в космос, а люди смогли бы существовать только на экваторе, потому что это самая удалённая от земной оси часть планеты. Учёные считают, что человечество не сможет жить на космических объектах, притяжение на которых в три раза сильнее, чем на Земле. Эта сила просто расплющит тело и раздавит все внутренние органы.

Где НЕ встречается[править]

  • «Гравитация»: вопреки названию, веса в космических эпизодах этого фильма нет, ни искусственного, ни ещё какого-либо. Гравитация-то есть — корабли же с орбиты не сходят.
  • «Живое» — происходит на международной космической станции.
  • «Игра Эндера» (в кино) — причём режиссёр подошёл к делу на редкость

    Гравитации там нет только в боевой комнате, а в остальных отсеках станции — есть. Станция при этом не вращается. Да и в книге упоминается искусственная гравитация.

    ответственно и учёл, что в невесомости человек даже двигается по-особому.

  • В сеттинге Ийона Тихого в старых космических кораблях не было. Отсюда много разных нелепостей, пережитых Светомиром Тихим (отцом Ийона).
  • В «Элизиуме» до такой степени не встречается, что в кабине летящего с ускорением космического корабля свободно плавают объекты.
  • Laurence E. Dahners серия «Tiona» — даже на момент конца книги — нет данной технологии. И у  — тоже. Перегрузки тоже есть и потенциальных космонавтов тестируют на то, сколько они выдержат и есть нормы для членов экипажа и для «посторонних». Другое дело что обеспечить постоянное ускорение — не проблема с того момента как Тиона с отцом придумали тяговые диски (выглядит чисто как нереактивная тяга, про приведенную гипотезу что они захватывают темную материю, потому что ну бред ж нереактивная тяга, в тексте также сказано что подтвердить… пока не получается). Энергия тоже не проблема еще с конца первой книги (реакторы холодного синтеза).
  • Мир вечного полдня — местные ракетолёты, самый быстрый вид транспорта внутри Сферы, вот только летают они с такими перегрузками что у людей ломает кости и из ушей течёт кровь, а пилотирует их с обеих сторон карлики, не то уродившиеся такими, не то дополнительно усовершенствованными как вид генетически, чтоб это выдерживать.

Невесомость

Некоторые далекие от космонавтики люди считают, что невесомость — это легкое и приятное состояние, испытать которое — одно удовольствие. У космонавтов на сей счет другое мнение: невесомость — штука очень неприятная: человек, находящийся в состоянии невесомости, испытывает примерно такие же ощущения, как человек, провисевший минут пять на турнике вниз головой. А находиться в таком состоянии несколько часов и уж тем более суток под силу только очень здоровым и специально тренированным людям. Не случайно в космонавты отбирают только очень крепких физически людей.

При длительном пребывании на орбите космонавтам необходимы постоянные тщательно разработанные физические упражнения. Если их не делать или делать недостаточно, то при возвращении на Землю космонавту может стать очень плохо.

В первые годы освоения околоземного пространства, когда влияние невесомости на человеческий организм было еще недостаточно изучено, космонавты после двухнедельного полета чувствовали себя ужасно: они не могли ни стоять, ни сидеть, ни даже спать. Весь день они лежали во взвешенном состоянии в специальном бассейне с теплой водой — только в таком состоянии они чувствовали себя нормально. Даже просто лежать на очень мягком матрасе им было тяжело. На полное восстановление организма после полета уходило несколько месяцев.

А теперь давайте разберемся, почему же в космическом полете возникает невесомость?

Рассмотрим космонавта, находящегося в кабине космического корабля, который движется с выключенными двигателями недалеко от Земли (рис. 4.1).

На космонавта действует сила тяжести , где  — ускорение свободного падения на высоте h. Предположим, что на космонавта еще действует сила реакции . Под действием этих двух сил и космонавт (вместе с кораблем) движется с ускорением , как и всякое свободно падающее тело. Тогда по второму закону Ньютона:

То есть сила реакции опоры равна нулю, а значит, по третьему закону Ньютона равен нулю и вес космонавта.

И, заметьте, наши рассуждения никак не зависят от направления и величины скорости спутника, поэтому космонавты, летящие в направлении Луны в корабле с выключенными двигателями, будут находиться именно в таком состоянии.

Постоянное ускорение

Сила гравитации, которую мы ощущаем, — это ускорение, которое испытывает любое тело, которое падает к центру нашей планеты. Оно равно 9,8 м/с 2 . Или, как Вы, возможно, слышали, в некоторых случаях говорят 1G. Один из способов симуляции гравитации на космическом корабле — это его постоянное ускорение. То нужно просто удаляться или приближаться к наше планете с ускорением в 1G. И ощущения у Вас будут точно таким же, как если бы Вы стояли на поверхности Земли. С ускорением 1G мы могли бы достичь Луны всего за 3 часа. Нам потребовалось бы полтора часа для ускорения и полтора часа для замедления. И все это время мы бы испытывали вполне комфортную силу тяжести. Если бы мы отправились на Юпитер, то нам потребовалось бы 160 часов, чтобы достичь его (80 на ускорение и 80 на замедление). В этом случае максимальная скорость, которую мы сможем развить, составит около 2800 километров в секунду. Или 1% от скорости света.

Однако этот метод имеет серьезные недостатки. Наибольшее расстояние, которое мы могли бы преодолеть в использование подобного подхода — один световой год. Такой полет займет два года. Один из них мы потратим на ускорение, другой — на замедление. В середине нашего путешествия мы будем путешествовать со скоростью света. Так что один световой год — это максимальное расстояние, которое можно преодолеть с постоянным ускорением 1G. Поскольку ничто не может двигаться быстрее света. Кроме того, чем ближе мы будем лететь к скорости света, тем больше энергии нам будет нужно. Таким образом становится понятно, что хотя такой подход — очень элегантное решение, однако практически воплотить в реальность его вряд ли получится.

Санитарный инструктор

Подводим итоги

  1. Колония особого режима – это специализированное учреждение, изначально построенное и предназначенное исключительно для полноценной изоляции людей, идущих по особо тяжким преступлениям.
  2. В колонии поступают такие категории нарушителей — рецидивисты, арестанты, судом приговоренные к пожизненному, «смертники», а также заключенные, помещенные в более строгие условия решением тюремной администрации.
  3. Преступники, которые отбывают положенное по суду наказание, содержатся в разных условиях — обычные, строгие, облегченные или особо строгие.
  4. В каждом из режимов установлены свои меры обеспечения безопасности. Направлены они на сведение возможности побега к нулю.
  5. Если заключенный показывает идеальное поведение на протяжении года, он имеет право рассчитывать на перенаправление в колонию с лояльными условиями пребывания.
  6. Женских колоний с особым режимом на данный момент нет.
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector