Кобальтовая бомба: страшная и несуществующая

Кобальт-60 в культуре

  • В фильме «Город страха» (1959) сюжет развёртывается вокруг похищения контейнера с кобальтом-60 в количестве, достаточном для уничтожения всего населения Лос-Анджелеса.
  • Французская пост-индастриал группа Cobalt 60 названа в честь данного изотопа.
  • Реактор на кобальте-60 служил объектом религиозного поклонения в романе «Всемогущий атом» американского писателя-фантаста Роберта Силверберга.
  • У компании DC Comics есть комикс «Кобальт-60» (первый выпуск — 1968) с одноимённым главным героем. Он носит маску и хочет отомстить своему врагу по имени Стронций-90. По его мотивам и под таким же названием снимается фильм Зака Снайдера.

Кобальт-60 в культуре

  • В фильме «Город страха» (1959) сюжет развёртывается вокруг похищения контейнера с кобальтом-60 в количестве, достаточном для уничтожения всего населения Лос-Анджелеса.
  • Французская пост-индастриал группа Cobalt 60 названа в честь данного изотопа.
  • Реактор на кобальте-60 служил объектом религиозного поклонения в романе «Всемогущий атом» американского писателя-фантаста Роберта Силверберга.
  • У компании DC Comics есть комикс «Кобальт-60» (первый выпуск — 1968) с одноимённым главным героем. Он носит маску и хочет отомстить своему врагу по имени Стронций-90. По его мотивам и под таким же названием снимается фильм Зака Снайдера.

Химические свойства

Оксиды

  • На воздухе кобальт окисляется при температуре выше 300 °C.
  • Устойчивый при комнатной температуре оксид кобальта представляет собой сложный оксид Co3O4, имеющий структуру шпинели, в кристаллической структуре которого одна часть узлов занята ионами Co2+, а другая — ионами Co3+; разлагается с образованием CoO при температуре выше 900 °C.
  • При высоких температурах можно получить α-форму или β-форму оксида CoO.
  • Все оксиды кобальта восстанавливаются водородом:
Co3O4+4H2→3Co+4H2O{\displaystyle {\mathsf {Co_{3}O_{4}+4H_{2}\rightarrow 3Co+4H_{2}O}}}

Оксид кобальта(III) можно получить, прокаливая соединения кобальта (II), например:

4Co(OH)2+O2→2Co2O3+4H2O{\displaystyle {\mathsf {4Co(OH)_{2}+O_{2}\rightarrow 2Co_{2}O_{3}+4H_{2}O}}}

Другие соединения

При нагревании кобальт реагирует с галогенами, причём соединения кобальта (III) образуются только с фтором.

2Co+3F2→2CoF3{\displaystyle {\mathsf {2Co+3F_{2}\rightarrow 2CoF_{3}}}}
Co+Cl2→CoCl2{\displaystyle {\mathsf {Co+Cl_{2}\rightarrow CoCl_{2}}}}
  • С серой кобальт образует 2 различных модификации CoS. Серебристо-серую α-форму (при сплавлении порошков) и чёрную β-форму (выпадает в осадок из растворов).
  • При нагревании CoS в атмосфере сероводорода получается сложный сульфид Со9S8
  • С другими окисляющими элементами, такими, как углерод, фосфор, азот, селен, кремний, бор. Кобальт тоже образует сложные соединения, являющиеся смесями, где присутствует кобальт со степенями окисления 1, 2, 3.
  • Кобальт способен растворять водород, не образуя химических соединений. Косвенным путём синтезированы два стехиометрических гидрида кобальта CoH2 и CoH.
  • Растворы солей кобальта CoSO4, CoCl2, Со(NO3)2 придают воде бледно-розовую окраску, поскольку в водных растворах ион Co2+ существует в виде аквакомплексов [Co(H2O)6]2+ розового цвета. Растворы солей кобальта в спиртах тёмно-синие. Многие соли кобальта нерастворимы.
  • Кобальт образует комплексные соединения. В степени окисления +2 кобальт образует лабильные комплексы, в то время как в степени окисления +3 — очень инертные. Это приводит к тому, что комплексные соединения кобальта(III) практически невозможно получить путём непосредственного обмена лигандов, поскольку такие процессы идут чрезвычайно медленно. Наиболее известны аминокомплексы кобальта.

Наиболее устойчивыми комплексами являются лутеосоли (например, [Co(NH3)6]3+) жёлтого цвета и розеосоли (например, [Co(NH3)5H2O]3+) красного или розового цвета.

Также кобальт образует комплексы с CN−, NO2− и многими другими лигандами. Комплексный анион гексанитрокобальтат 3- образует нерастворимый осадок с катионами калия, что используется в качественном анализе.

Применение

Кобальт-60 используется в производстве источников гамма-излучения с энергией около 1,3 МэВ, которые применяются для:

  • стерилизации пищевых продуктов, медицинских инструментов и материалов;
  • активации посевного материала (для стимуляции роста и урожайности зерновых и овощных культур);
  • обеззараживания и очистки промышленных стоков, твёрдых и жидких отходов различных видов производств;
  • радиационной модификации свойств полимеров и изделий из них;
  • радиохирургии различных патологий (см. «кобальтовая пушка», гамма-нож);
  • дистанционной и внутриполостной гамма-терапии;
  • гамма-дефектоскопии;
  • определения консистенции (плотности) перекачиваемых по трубопроводам жидких смесей в составе приборов-консистометров (измерителей плотности);
  • в системах контроля уровня металла в кристаллизаторе при непрерывной разливке стали.

Является одним из изотопов, применяющихся в радиоизотопных источниках энергии (РИТЭГах и т. п.).

Разборка

Частичная разборка необходима при чистке и смазке ТОЗ-120. Полная производится только для ремонта и только в условиях оружейной мастерской.

Частичная подразумевает следующие действия:

  • проверяют отсутствие патронов в патроннике;
  • отжимают защелку и, перемещая цевье вниз и вперед, снимают его со стволов;
  • поворачивают запирающий рычаг вправо, открывают стволы и отсоединяют от коробки;
  • доводят рычаг вправо до предела, утапливают толкатель и отпускают рычаг, чтобы он вернулся в позицию вдоль оси.

Сборку ТОЗ-120 производят в обратном порядке.

Хранят ружье в незаряженном виде со спущенными крюками. Боеприпас должен храниться отдельно.

Применение

  • Легирование кобальтом стали повышает её жаропрочность, улучшает механические свойства. Из сплавов с применением кобальта создают обрабатывающий инструмент: свёрла, резцы, и т. п.
  • Магнитные свойства сплавов кобальта находят применение в аппаратуре магнитной записи, а также сердечниках электромоторов и трансформаторов.
  • Для изготовления постоянных магнитов иногда применяется сплав, содержащий около 50 % кобальта, а также ванадий или хром.
  • Кобальт применяется как катализатор химических реакций.
  • Кобальтат лития применяется в качестве высокоэффективного положительного электрода для производства литиевых аккумуляторов.
  • Силицид кобальта — отличный термоэлектрический материал, он позволяет производить термоэлектрогенераторы с высоким КПД.
  • Радиоактивный кобальт-60 (период полураспада 5,271 года) применяется в гамма-дефектоскопии и медицине.
  • 60Со используется в качестве топлива в радиоизотопных источниках энергии.

Применение изотопов кобальта в промышленности

Кобальт-60 — очень удобный источник гамма-излучения, так как легко получить заданную активность излучателя, подвергая природный кобальт нейтронному облучению в ядерных реакторах на нужное время. В гамма-спектре его имеются 2 спектральные линии с хорошо известными энергиями и относительными интенсивностями, что удобно для калибровки спектрометров и детекторов гамма-излучения. Также применяется для:

  • стерилизации медицинского оборудования и материалов;
  • стерилизации пищевых продуктов в целях консервирования (холодная пастеризация);
  • радиографии (просвечивания деталей с целью выявления дефектов при неразрушающем контроле);
  • при измерении плотности сырья и материалов (например, плотности бетона);
  • в измерителях уровня сыпучих и жидких материалов в бункерах и баках.

Образование и распад


Гамма-спектр распада кобальта-60. Видны линии, соответствующие энергиям 1,1732 и 1,3325 МэВ

Кобальт-60 является дочерним продуктом β−-распада нуклида 60Fe (период полураспада составляет 2.6·106 лет):

2660Fe→2760Co+e−+ν¯e.{\displaystyle \mathrm {{}_{26}^{60}Fe} \rightarrow \mathrm {{}_{27}^{60}Co} +e^{-}+{\bar {\nu }}_{e}.}

Кобальт-60 также претерпевает бета-распад (период полураспада 5,2713 года), в результате которого образуется стабильный изотоп никеля 60Ni:

2760Co→2860Ni+e−+ν¯e.{\displaystyle \mathrm {^{60}_{27}Co} \rightarrow \mathrm {^{60}_{28}Ni} +e^{-}+{\bar {\nu }}_{e}.}

Основное состояние ядра 60Co имеет спин и чётность Jπ = 5+, а основное состояние дочернего ядра 60Ni имеет Jπ = 0+. Поэтому бета-распад в основное состояние очень сильно подавлен в связи с большим изменением спина, которое потребовалось бы для такого перехода. Бета-распады 60Co происходят лишь в возбуждённые состояния 60Ni, имеющие большой спин: 1,332 МэВ (2+), 2,158 МэВ (2+) и 2,505 МэВ (4+).

Наиболее вероятным является испускание электрона и антинейтрино с суммарной энергией 0,318 МэВ, 1,491 МэВ или 0,665 МэВ (в последнем случае вероятность составляет всего лишь 0,022 %). После их испускания нуклид 60Ni сразу находится, как правило, на одном из трёх энергетических уровней с энергиями 1,332, 2,158 и 2,505 МэВ (в зависимости от того, какую энергию унесла пара электрон/антинейтрино), а затем переходит в основное состояние, испуская гамма-кванты (3 уровня дают в комбинации 6 возможных энергий гамма-излучения) или передавая энергию конверсионным электронам. Наиболее вероятным является каскадное испускание гамма-квантов с энергией 1,1732 МэВ и 1,3325 МэВ. Полная энергия распада кобальта-60 составляет 2,823 МэВ.

Симптомы острых отравлений

И польза, и вред кобальта для организма человека очевидны. При этом симптомы острого отравления довольно скудны, и главные их признаки – вовсе не в жалобах, а в данных лабораторных показателей. Кроме уже описанных выше симптомов кардиопатии, таких как слабость, одышка, тахикардия, сердечная аритмия, при остром отравлении, и особенно растворимыми солями кобальта, например, его хлоридами, могут возникать различные желудочно-кишечные расстройства, такие как тошнота и рвота, а также поражение периферической и центральной нервной системы, приводящие к уменьшению проприорецепции.

Что это такое? Проприорецепция – это способность человека с закрытыми глазами определять положение своего тела в пространстве. При характерных расстройствах этого вида чувствительности, которая еще называется суставно-мышечным чувством, возможно проявление так называемой заднестолбовой атаксии. При этом поражаются задние столбы спинного мозга, по которым и проводится этот специфический тип чувствительности, и это может проявляться внезапными падениями или изменениями походки в темноте.

Человек при этом расстройстве обязательно должен видеть свои ноги, и при отсутствии освещения он не может передвигаться, или это передвижение очень затруднено, поскольку он просто не чувствует, где находится его конечности, и этот процесс нужно контролировать зрительно. Также возможно расстройство вестибулярного аппарата, головокружение, и на этом клиническая симптоматика острых проявлений солями кобальта заканчивается.

Основными симптомами являются лабораторные показатели, например данные общего анализа крови. На фоне острого отравления повышается уровень гемоглобина, нарастает показатель гематокрита, или сгущение крови и увеличивается количество эритроцитов. Вообще, возникает полицитемия – в крови появляется много клеточных элементов, ретикулоцитов.

В биохимическом анализе нарастает закисление крови – метаболический ацидоз, возникает увеличение щитовидной железы, уже спустя несколько дней после отравления, падает уровень гормонов.

Вред кобальта, как источника острых отравлений еще и в том, что они не очень показательны. Все это ведет к значительным сложностям в диагностике. Ведь далеко не всегда можно выявить атаксию, особенно на фоне плохого самочувствия и головокружения у лежащего пациента. Поэтому важнейшим должно быть указание на источник отравления, или данные производственного анамнеза.

Применение

Кобальт-60 используется в производстве источников гамма-излучения с энергией около 1,3 МэВ, которые применяются для:

  • стерилизации пищевых продуктов, медицинских инструментов и материалов;
  • активации посевного материала (для стимуляции роста и урожайности зерновых и овощных культур);
  • обеззараживания и очистки промышленных стоков, твёрдых и жидких отходов различных видов производств;
  • радиационной модификации свойств полимеров и изделий из них;
  • радиохирургии различных патологий (см. «кобальтовая пушка», гамма-нож);
  • дистанционной и внутриполостной гамма-терапии;
  • гамма-дефектоскопии;
  • определения консистенции (плотности) перекачиваемых по трубопроводам жидких смесей в составе приборов-консистометров (измерителей плотности);
  • в системах контроля уровня металла в кристаллизаторе при непрерывной разливке стали.

Является одним из изотопов, применяющихся в радиоизотопных источниках энергии (РИТЭГах и т. п.).

Применение

Кобальт-60 используется в производстве источников гамма-излучения с энергией около 1,3 МэВ, которые применяются для:

  • стерилизации пищевых продуктов, медицинских инструментов и материалов;
  • активации посевного материала (для стимуляции роста и урожайности зерновых и овощных культур);
  • обеззараживания и очистки промышленных стоков, твёрдых и жидких отходов различных видов производств;
  • радиационной модификации свойств полимеров и изделий из них;
  • радиохирургии различных патологий (см. «кобальтовая пушка», гамма-нож);
  • дистанционной и внутриполостной гамма-терапии;
  • гамма-дефектоскопии;
  • определения консистенции (плотности) перекачиваемых по трубопроводам жидких смесей в составе приборов-консистометров (измерителей плотности);
  • в системах контроля уровня металла в кристаллизаторе при непрерывной разливке стали.

Является одним из изотопов, применяющихся в радиоизотопных источниках энергии (РИТЭГах и т. п.).

Применение изотопов кобальта в промышленности

Кобальт-60 — очень удобный источник гамма-излучения, так как легко получить заданную активность излучателя, подвергая природный кобальт нейтронному облучению в ядерных реакторах на нужное время. В гамма-спектре его имеются 2 спектральные линии с хорошо известными энергиями и относительными интенсивностями, что удобно для калибровки спектрометров и детекторов гамма-излучения. Также применяется для:

  • стерилизации медицинского оборудования и материалов;
  • стерилизации пищевых продуктов в целях консервирования (холодная пастеризация);
  • радиографии (просвечивания деталей с целью выявления дефектов при неразрушающем контроле);
  • при измерении плотности сырья и материалов (например, плотности бетона);
  • в измерителях уровня сыпучих и жидких материалов в бункерах и баках.

Кобальт-60 в культуре

  • В фильме «Город страха» (1959) сюжет развёртывается вокруг похищения контейнера с кобальтом-60 в количестве, достаточном для уничтожения всего населения Лос-Анджелеса.
  • Французская пост-индастриал группа Cobalt 60 названа в честь данного изотопа.
  • Реактор на кобальте-60 служил объектом религиозного поклонения в романе «Всемогущий атом» американского писателя-фантаста Роберта Силверберга.
  • У компании DC Comics есть комикс «Кобальт-60» (первый выпуск — 1968) с одноимённым главным героем. Он носит маску и хочет отомстить своему врагу по имени Стронций-90. По его мотивам и под таким же названием снимается фильм Зака Снайдера.

Таблица изотопов кобальта

Символ нуклида Z(p) N(n) Масса изотопа (а. е. м.) Период полураспада(T1/2) Спин и чётность ядра
Энергия возбуждения
47Co 27 20 47,01149 7/2-
48Co 27 21 48,00176 6+
49Co 27 22 48,98972 35 нс 7/2-
50Co 27 23 49,98154 44 мс 6+
51Co 27 24 50,97072 60 мс 7/2-
52Co 27 25 51,96359 115 мс 6+
52mCo 380 кэВ 104 мс 2+
53Co 27 26 52,954219 242 мс 7/2-
53mCo 3,197 МэВ 247 мс 19/2-
54Co 27 27 53,9484596 193,28 мс 0+
54mCo 197,4 кэВ 1,48 мин 7+
55Co 27 28 54,9419990 17,53 ч 7/2-
56Co 27 29 55,9398393 77,233 сут 4+
57Co 27 30 56,9362914 271,74 сут 7/2-
58Co 27 31 57,9357528 70,86 сут 2+
58m1Co 24,95 кэВ 9,04 ч 5+
58m2Co 53,15 кэВ 10,4 мкс 4+
59Co 27 32 58,9331950 стабилен 7/2-
60Co 27 33 59,9338171 5,2713 г. 5+
60mCo 58,59 кэВ 10,467 мин 2+
61Co 27 34 60,9324758 1,650 ч 7/2-
62Co 27 35 61,934051 1,50 мин 2+
62mCo 22 кэВ 13,91 мин 5+
63Co 27 36 62,933612 26,9 с 7/2-
64Co 27 37 63,935810 300 мс 1+
65Co 27 38 64,936478 1,20 с 7/2-
66Co 27 39 65,93976 180 мс 3+
66m1Co 175 кэВ 1,21 мкс 5+
66m2Co 642 кэВ 100 мкс 8-
67Co 27 40 66,94089 425 мс 7/2-
68Co 27 41 67,94487 199 мс 7-
68mCo 150 кэВ 1,6 с 3+
69Co 27 42 68,94632 227 мс 7/2-
70Co 27 43 69,9510 119 мс 6-
70mCo 200 кэВ 500 мс 3+
71Co 27 44 70,9529 97 мс 7/2-
72Co 27 45 71,95781 62 мс 6-
73Co 27 46 72,96024 41 мс 7/2-
74Co 27 47 73,96538 50 мс 0+
75Co 27 48 74,96833 40 мс 7/2-
76Co 27 49 > 634 нс

МиГ-21бис=»margin-top:>

Первым
сверхзвуковым истребителем с маневренными характеристиками, соответствующими
требованиям к самолетам четвертого поколения, стал самолёт МиГ-21бис.
(Е-7бис, изделие 75), созданный в 1971 г., с некоторым опережением по сравнению
с американскими маневренными истребителями F-15 и F-16. По сравнению с
предыдущими модификациями МиГ-21, на новом самолете были
применены интегральные топливные баки, что позволило несколько снизить массу
планера при сохранении достаточно большого запаса топлива (2880 л), а также
новый двигатель Р-25-300 (1×4100/7100 кто, создан под руководством С.А.
Гаврилова), имеющий режим «Чрезвычайный форсаж», при котором тяга кратковременно
(не более 3 мин) может быть увеличена до 9900 кгс. Вооружение для действий по
воздушным целям включало до шести УР Р-55 (развитие ракеты К-5) и Р-60М с ТКС, а
также К-13 с радиолокационным наведением. Новый самолет мог разгоняться со
скоростью 600 до 1100 км/ч за 18 секунд (МиГ-21ПФ для этого
требовалось 27,5 с). Максимальная скороподъемность достигала 225 м/с,
продолжительность полета на малой высоте со скоростью 1000 км/ч составила 36 мин
(на самолетах ранних модификаций она равнялась 28 мин.

МиГ-21 (вверху) и



=»margin-top:>
бис
(внизу)

По результатам
компьютерного моделирования было установлено, что самолет  =»margin-top:>
может на равных вести маневренный бой с американским истребителем
F-16
на
ближних дистанциях в простых погодных условиях. В сложных погодных условиях МиГ-21бис
получал даже некоторое преимущество перед американским самолетом за счет
использования ракет с радиолокационной полуактивной системой наведения. Кроме
того,   МиГ-21  бис
превосходил F-16A по максимальной скорости и практическому потолку, уступая по
дальности полета и характеристикам БРЭО.


=»margin-top:>

бис

См. также

Причина неудач и чего нельзя делать

Кобальтовая пушка

Кобальтовая пушка работает без источника тока, менее громоздка, проникающая способность у-лу-чей выше рентгеновских.

В аппарате для облучения злокачественных опухолей, кобальтовой пушке ГУТ-400 ( гамма-установка терапевтическая), количество кобальта-60 соответствует по своей активности 400 г радия.

В аппарате для облучения глубокозалегающих злокачественных опухолей, кобальтовой пушке ГУТ-400 ( гамма-установка терапевтическая), количество кобальта-60 соответствует по своей активности 400 г радия.

Кобальтовая пушка.

Лежащего пациента помещают в большой барабан, внутри которого находится кобальтовая пушка, хорошо заэкранированная, чаще всего природным ураном, более пригодным для этой цели, чем свинец. Если бы защита изготовлялась из свинца, она должна была бы иметь огромные размеры и весила бы в четыре раза больше, чем урановая. Общий вес радиационной защиты такой установки достигает нескольких сотен килограммов. Управление кобальтовой пушкой осуществляется из соседнего помещения при помощи сложной автоматики.

Дозу облучения можно регулировать, не только изменяя расстояние от источника излучения до объекта, но и опуская кобальтовую пушку под землю и поднимая ее лишь на то время, когда предполагается проводить облучение исследуемых объектов.

Радиоактивный изотоп 60Со широко применяют как Р — и — излучатель с периодом полураспада 5 2 г. Приборы с этим изотопом ( кобальтовая пушка) используют в медицине для лечения раковых заболеваний, стерилизации продуктов, инициирования полимеризации и обработки пластмасс, в научных исследованиях.

Из типичного оборудования, которое может быть использовано для химических целей, можно назвать атом ые реакторы, электростатические генераторы типа Ван — дерТраафа, кобальтовые пушки, циклотроны, синхротроны, бетатроны, электронные ускорители, например довольно компактный линейный ускоритель на бегущей волне. Однако элементарные расчеты указывают на нецелесообразность применения указанного оборудования в лабораторной практике. Если это излучение полностью используется на образование радикалов, то скорость их образования при С 5 составит около 7 4 — 10 — б моль / с.

Были использованы три источника излучения: высоко интенсивное у-излучение Со64, электронный линейный ускоритель и брукхейвенский реактор с гефитовым замедлителем. Кобальтовая пушка давала поля до 6 5 106 р / ч, измеренные дозиметром Фрика.

Другая установка с радиоактивным кобальтом представляет собой как бы огромные клещи. На конце одного плеча находится кобальтовая пушка, на конце другого — — противовес из свинцовых блоков. Все устройство равномерно поворачивается вокруг пациента, которого укладывают так, чтобы пучок излучения все время был направлен в центр опухоли.

Не только рентгеновские лучи, но и другие виды излучения могут вызывать наследственные изменения. Источником гамма-лучей в лабораториях обычно служит радиоактивный кобальт ( Со60), помещенный в так называемые кобальтовые пушки. Особенно удобны пушки в опытах с продолжительным, хроническим облучением, когда облучаемые объекты располагают по концентрическим окружностям на разных расстояниях от источника излучения.

Начиная с 20 — х годов нашего столетия, кобальт стал одним из важнейших легирующих металлов, используемых в производстве инструментальных сталей, термических сплавов, сплавов с особыми магнитными свойствами, на что расходуется 77 % всего выпускаемого кобальта. Значительную роль кобальт играет как катализатор в органическом синтезе, в производстве эмалей и красок; в медицине изотоп 60Со применяют в кобальтовых пушках.

Начиная с 20 — х годов нашего столетия, кобальт стал одним из важнейших легирующих металлов, используемых в производстве инструментальных сталей, термических сплавов, сплавов с-особыми магнитными свойствами, на что расходуется 77 % всего выпускаемого кобальта. Значительную роль кобальт играет как катализатор в органическом синтезе, в производстве эмалей и красок; в медицине изотоп 60Со применяют в кобальтовых пушках.

Распределение соли радиоактивного фосфора в растении.

Широкое и все возрастающее применение находят меченые атомы в медицине и биологии. Например, при помощи радиоактивного йода определяют локализацию опухолей ( в мозгу); радиоактивным кобальтом ( Совп), испускающим f — лучи ( прибор кобальтовая пушка), разрушают наружные раковые опухоли.

Профессиональные вредности и гигиена труда

Несмотря на то, что К. является биоэлементом, участвующим в осуществлении важных реакций обмена веществ в организме, в повышенных дозах он обладает токсическими свойствами и относится к группе промышленных ядов второго класса опасности (см. Яды промышленные).

В процессе получения и применения К. и его соединений возможно их поступление в организм через органы дыхания (в виде аэрозолей), частично через жел.-киш. тракт, а также через кожу. Содержание К. в воздухе в ряде случаев может превышать предельно допустимую концентрацию, особенно при таких операциях, как разгрузка, выгрузка и просев сыпучих материалов, содержащих К. На предприятиях порошковой металлургии при получении вольфрамово-кобальтовых твердых сплавов может выделяться в воздух пыль смешанного состава, содержащая К. до 3,33 мг/м3. Смесь К., вольфрама и титана обладает более выраженной токсичностью, чем каждый из этих металлов в отдельности. Проф. контакт с К. имеют рабочие в асбестоцементной промышленности, штукатуры, бетонщики и другие, работающие с жидким цементом, а также маляры и колерщики при работе с различными красящими веществами. Воздействию К. могут подвергаться и медсестры процедурных кабинетов при инъекциях витамина В12. Наиболее выраженным токсическим действием обладают хорошо растворимые в воде и биол, средах соли К. (хлористый К. и др.), а также металлический К. Общетоксическое действие К. проявляется поражением преимущественно органов дыхания, системы кроветворения, тканевого дыхания, нервной системы и органов пищеварения. Имеются данные, что повышенная температура воздуха (выше 30°) усиливает токсическое действие К.

При воздействии К. на организм возможны острые и хрон, отравления. В производственных условиях у рабочих могут наблюдаться преимущественно хрон, отравления К., при этом характерны жалобы на кашель, нарушение аппетита, диспепсические расстройства и нарушение обоняния. Развиваются изменения в верхних дыхательных путях (хрон, риниты, ларингиты, фарингиты). При длительном контакте с соединениями К. отмечаются явления хрон, бронхита, пневмонии и пневмосклероза. Описаны случаи бронхиальной астмы. При воздействии К. и его соединений наблюдали возникновение кардиомиопатии (см.). Обнаруживаются изменения крови: повышение содержания гемоглобина, увеличение количества эритроцитов, ретикулоцитоз, снижение свертываемости, при тяжелых формах — анемия. Выявляются патол, изменения со стороны печени и симптомы раздражения почек. В аварийных ситуациях возможны случаи острых отравлений К. На фоне выраженной вегетативно-сосудистой дисфункции и функц. нарушения состояния ц. н. с. отмечалась рассеянная микроочаговая симптоматика.

Соединения К. обладают выраженными сенсибилизирующими свойствами, они могут быть причиной развития проф. дерматитов, экзем и гиперкератозов; имеются указания на развитие аллергического миокардита. Установлено токсическое влияние соединений К. на течение беременности, родов и на развитие плода и новорожденного.

Методы определения К. в воздухе основаны на взаимодействии иона CO2+ с нитрозо-R-солью и последующей колориметрии окрашенного комплексного соединения (чувствительность метода 0,5 мкг в анализируемом объеме). Возможно определение К. в моче и крови после их минерализации по реакции К. с нитрозо-R-солью или нитрозонафтолом.

Предельно допустимая концентрация металлического К. и его окиси для рабочей зоны производственных помещений равна 0,5 мг/м3; для тетракарбонила и карбонилгидрида К. и продуктов его распада — 0,01 мг/м3 (по К.). Для всех неорганических соединений К. в воде водоемов предельно допустимая концентрация равна 1 мг/л. Среднесуточная предельно допустимая концентрация К. для атмосферного воздуха — 0,5 мг/м3 (К. и его соединения) и 0,01 мг/м3 (К. гидрокарбонилы).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector