Как работать авиационные двигатели

Содержание:

Содержание

Конструкция поршневого ДВС

Основные элементы ДВС

Поршневой двигатель внутреннего сгорания состоит из следующих основных элементов:

  • поршень — возвратно-поступательным движением обеспечивает впуск смеси, ее сжатие, получение энергии и дальнейший вывод отработанных газов;
  • поршневые кольца выполняют функцию уплотнителей;
  • шатун и коленчатый вал осуществляют преобразование возвратно-поступательного импульса в крутящий момент;
  • поршневой палец обеспечивает шарнирное соединение поршня и шатуна;
  • впускной и выпускной клапаны открывают цилиндр для входа смеси (впускной] и выхода отработанных газов (выпускной), герметизируют цилиндр во время сжатия и воспламенения;
  • топливная форсунка обеспечивает распыл топлива;
  • свеча зажигания создает искру, которая поджигает топливовоздушную смесь;
  • блок цилиндров — силовой корпус, объединяющий цилиндры и обеспечивающий их охлаждение.

Сгорание топлива в поршневом двигателе осуществляется в цилиндрах, где поджигается смесь топлива и воздуха, под действием давления получившихся газов происходит поступательное движение поршня. Образовавшаяся при этом тепловая энергия превращается в механическую. Это движение поршня, в свою очередь, преобразуется во вращательное движение коленчатого вала двигателя через шатун, являющийся связующим звеном между цилиндром с поршнем и коленчатым валом.

Коэффициент полезного действия современных поршневых двигателей не превышает 25-30%, то есть большая часть энергии, получаемой при сгорании топлива, превращается в тепло, которое необходимо отводить из двигателя. Эту функцию выполняет система охлаждения.

Схемы двигателей со временем усложнялись, появились моторы 4-, 6-, 8-цилиндровые; рядные и V-образные; с жидкостным охлаждением или воздушным .

Мощность зависела в основном от объёма цилиндров. Но с увеличением объёма цилиндров (или их количества) росла масса двигателя.

Принцип работы бестопливного агрегата

Принцип работы данного устройства заключен в том, что все его магниты повернуты одноименными полюсами в сторону друг друга. Так как одноименные магнитные полюса будут всегда отталкиваться друг от друга, то их движения заставит диск или маховик вращаться вокруг своей оси. Кроме этого типа двигателя, имеется еще один, который очень схож по своему принципу работы с бестопливным.

Таким устройством стал магнитный двигатель, который имеет статор в виде постоянного магнитного кольца, а также ротор (или его еще называют якорь). Этот элемент представляет собой стержневой постоянный магнит, который размещен внутри статора в одной плоскости.

Недостатком таких типов двигателей стало то, что они нуждаются в подводе электроэнергии для осуществления своей работы. При изобретении такого типа устройства ставилось несколько целей. Необходимо было добиться экологически чистого вида двигателя, который бы не имел вредных выхлопов в процессе своей работы, а также работал без потребления какого-либо вида топлива и без подвода электрической энергии из внешних источников. При этом он также не должен был загрязнять окружающую среду или атмосферный воздух.

О комплектации

Пульсирующие воздушно-реактивные авиа двигатели

Пульсирующие воздушно-реактивные двигатели не нашли применения в современной авиации из-за неудовлетворительной своей эффективности. Главной особенностью их функционирования является то, что работают они на принципе воздушно-реактивного двигателя. С той лишь разницей, что топливо в камеру сгорания подаётся периодически, создавая своеобразные импульсы, позволяющие двигать объект в заданном направлении.

Пульсирующие воздушно-реактивные двигатели эффективны лишь при однократном своём использовании, в последующих же случаях, их использование снижает и саму надёжность и увеличивает затраты.

Как работает турбореактивный двигатель?

Реактивные двигатели применяются повсеместно, а турбореактивные устанавливаются больших пассажирских лайнерах. Отличие их в том, что первый несет с собой запас топлива и окислителя, а конструкция обеспечивает их подачу из баков.

Одна из самых важных деталей у них — это лопасть турбины. От нее зависит мощность двигателя.

Схема турбореактивного двигателя.

Именно они вырабатывают тяговые усилия, необходимые для ускорения самолета. Каждый из лопастей производит в 10 раз больше энергии, чем самый обычный, автомобильный двигатель. Они устанавливаются позади камеры сгорания, в той части двигателя, где самое высокое давление, а температура доходит до 1400 градусов по Цельсию.

В процессе производства лопастей они проходят через процесс монокристаллизации, что придает им твердости и прочности.

Перед тем, как установить на самолет, каждый двигатель проверяется на полное тяговое усилие. Он должен пройти сертификацию Европейского совета по безопасности и компанией, которая его произвела. Одной из самых крупных фирм по их производству является Роллс-Ройс.

Реактивные двигатели в самолете

Первый реактивный самолет был разработан немцами в 1937 году, а его испытания начались лишь в 1939 году. Однако имеющиеся на то время двигатели потребляли невероятно большое количество топлива и запас хода такого самолета составлял всего лишь 60 км.

В это же время Японии и Великобритании удалось создать собственные самолеты с реактивными двигателями. Но это были лишь опытные экземпляры, так и не поступившие в серийное производство.

Первым серийным реактивным самолетом стал немецкий «Мессершмит», который, однако, не позволил гитлеровской коалиции взять верх в развязанной ими войне.

Мессершмитт Me-262 Швальбе/Штурмфогель

В гражданской же авиации реактивные самолеты появились лишь в 1952 году в Великобритании.

С тех пор и по настоящие дни, реактивные двигатели являются основными двигателями, применяемыми в самолетостроении. Именно благодаря им, современны лайнеры развивают скорость до 800 километров в час.

Участие Eurofighter Typhoon в индийском тендере MMRCA

Таблица: сравнительные характеристики самолётов, принимавших участие в индийском тендере MMRCA
Название Dassault Rafale Eurofighter Typhoon F-16IN Super Viper F/A-18E/FSuper Hornet JAS 39 NG(IN) МиГ-35
Страна
Производитель Dassault Aviation Eurofighter GmbH Lockheed Martin Boeing Defense, Space & Security Saab AB РСК «МиГ»
Длина 15,30 м 15,96 м 15,03 м 18,31 м 14,10 м 17,32 м
Размах крыла 10,90 м 10,95 м 10,00 м 13,62 м 8,40 м 12,00 м
Площадь крыла 45,7 м² 50,0 м² 27,9 м² 46,5 м² 30,0 м² 42,0 м²
Масса пустого 10 000 кг 11 000 кг 9979 кг 14 552 кг 7100 кг 11 000 кг
Масса топлива (без ПТБ) 4700 кг 4996 кг 3265 кг 6780 кг 3360 кг 4800 кг
Боевая нагрузка 9500 кг 7500 кг 7800 кг 8050 кг 5300 кг 7000 кг
Узлов подвески вооружения 14 (5 для тяжёлого вооружения) 13 11 11 10 10
Максимальная взлётная масса 24 500 кг (нормальная — 14 700) 23 500 кг 21 800 кг 29 937 кг 14 300 кг 23 500 кг
Двигатель 2 × 2 × 1 × GE F110-132 2 × 1 × 2 × РД-33МКВ
Максимальная тяга 2 × 50,0 кН 2 × 60,0 кН 1 × 84,0 кН 2 × 62,3 кН 1 × 62,3 кН 2 × 53,0 кН
Максимальная тяга на форсаже 2 × 75,0 кН 2 × 90,0 кН 1 × 144,0 кН 2 × 98,0 кН 1 × 98,0 кН 2 × 88,3 кН
Максимальная скорость на высоте M=1,8+ M=2,25 M=2,0 M=1,8 M=2,0 M=2,25
Боевой радиус 1389 км (с 3-мя ПТБ) 1390 км 550 км 722 км 1300 км 1000 км
Практический потолок 15 240 м 19 812 м 18 000 м 15 000 м 15 240 м 17 500 м
Скороподъёмность 305 м/с 315 м/с 254 м/с 228 м/с 255 м/с 330 м/с
Тяговооружённость 1,03 1,18 1,10 0,93 1,18 1,10
Управляемый вектор тяги нет есть нет нет нет есть
БРЛС с АФАР есть есть есть есть есть есть
Стоимость (2011 год) $85—124 млн $120 млн $50,0 млн $55,0 млн $48,0 млн ~$45,0 млн

Устройство

Первый контур вмещает в себя компрессоры высокого и низкого давления, камеру сгорания, турбины высокого и низкого давления и сопло. Второй контур состоит из направляющего аппарата и сопла. Такая конструкция является базовой, но возможны и некоторые отклонения, например, потоки внутреннего и внешнего контура могут смешиваться и выходить через общее сопло, или же двигатель может оснащаться форсажной камерой.

Теперь коротко о каждом составляющем элементе ТРДД. Компрессор высокого давления (КВД) – это вал, на котором закреплены подвижные и неподвижные лопатки, формирующие ступень. Подвижные лопатки при вращении захватывают поток воздуха, сжимают его и направляют внутрь корпуса. Воздух попадает на неподвижные лопатки, тормозится и дополнительно сжимается, что повышает его давление и придает ему осевой вектор движения. Таких ступеней в компрессоре несколько, а от их количества напрямую зависит степень сжатия двигателя. Такая же конструкция и у компрессора низкого давления (КНД), который расположен перед КВД. Отличие между ними заключается только в размерах: у КНД лопатки имеют больший диаметр, перекрывающий собой сечение и первого и второго контура, и меньшее количество ступеней ( от 1 до 5).

В камере сгорания сжатый и нагретый воздух перемешивается с топливом, которое впрыскивается форсунками, а полученный топливный заряд воспламеняется и сгорает, образуя газы с большим количеством энергии. Камера сгорания может быть одна, кольцевая, или же выполняться из нескольких труб.

Турбина по своей конструкции напоминает осевой компрессор: те же неподвижные и подвижные лопатки на валу, только их последовательность изменена. Сначала расширенные газы попадают на неподвижные лопатки, выравнивающие их движение, а потом на подвижные, которые вращают вал турбины. В ТРДД турбин две: одна приводит в движение компрессор высокого давления, а вторая – компрессор низкого давления. Работают они независимо и между собой механически не связаны. Вал привода КНД обычно расположен внутри вала привода КВД.

Сопло – это сужающаяся труба, через которую выходят наружу отработанные газы в виде реактивного потока. Обычно каждый контур имеет свое сопло, но бывает и так, что реактивные потоки на выходе попадают в общую камеру смешения.

Внешний, или второй, контур – это полая кольцевая конструкция с направляющим аппаратом, через которую проходит воздух, предварительно сжатый компрессором низкого давления, минуя камеру сгорания и турбины. Этот поток воздуха, попадая на неподвижные лопасти направляющего аппарата, выравнивается и движется к соплу, создавая дополнительную тягу за счет одного только сжатия КНД без сжигания топлива.

Форсажная камера – это труба, размещенная между турбиной низкого давления и соплом. Внутри у нее установлены завихрители и топливные форсунки с воспламенителями. Форсажная камера дает возможность создания дополнительной тяги за счет сжигания топлива не в камере сгорания, а на выходе турбины. Отработанные газы после прохождения ТНД и ТВД имеют высокую температуру и давления, а также значительное количество несгоревшего кислорода, поступившего из второго контура. Через форсунки, установленные в камере, подается топливо, которое смешивается с газами, и воспламеняется. В результате тяга на выходе возрастает порой в два раза, правда, и расход топлива при этом тоже растет. ТРДД, оснащенные форсажной камерой, легко узнать по пламени, которое вырывается из их сопла во время полета или при запуске.

форсажная камера в разрезе, на рисунке видны завихрители.

Самым важным параметром ТРДД является степень двухконтурности (к) – отношение количества воздуха, прошедшего через второй контур, к количеству воздуха, прошедшего через первый. Чем выше этот показатель, тем более экономичным будет двигатель. В зависимости от степени двухконтурности можно выделить основные виды двухконтурных турбореактивных двигателей. Если его значение к<2, это обычный ТРДД, если же к>2, то такие двигатели называются турбовентиляторными (ТВРД). Есть также турбовинтовентиляторные моторы, у которых значение достигает и 50-ти, и даже больше.

В зависимости от типа отведения отработанных газов различают ТРДД без смешения потоков и с ним. В первом случае каждый контур имеет свое сопло, во втором газы на выходе попадают в общую камеру смешения и только потом выходят наружу, образуя реактивную тягу. Двигатели со смешением потоков, которые устанавливаются на сверхзвуковые самолеты, могут снабжаться форсажной камерой, которая позволяет увеличивать мощность тяги даже на сверхзвуковых скоростях, когда тяга второго контура практически не играет роли.

Как производят реактивные двигатели для моделей самолетов?

Их производство для моделей самолетов занимает около 6 часов. Сначала вытачивается базовая пластина из алюминия, к которой крепятся все остальные детали. По размеру она совпадает с хоккейной шайбой.

К ней прикрепляют цилиндр, поэтому получается что-то вроде консервной банки. Это будущий двигатель внутреннего сгорания. Далее устанавливается система подачи топлива. Чтобы его закрепить, в основную пластину вкручиваются шурупы, предварительно опущенные в специальный герметик.

Двигатель для модели самолета.

Каналы стартера крепятся с другой стороны камеры, чтобы перенаправлять выбросы газа в турбинное колесо. В отверстие сбоку от камеры сгорания устанавливается спираль накаливания. Она поджигает топливо внутри двигателя.

Потом ставят турбину и центральную ось цилиндра. На нее ставят колесо компрессора, которое нагнетает воздух в камеру сгорания. Его проверяют с помощью компьютера, прежде чем закрепить пусковую установку.

Готовый двигатель еще раз проверяют на мощность. Его звук немногим отличается от звука двигателя самолета. Он, конечно, меньшей силы, но полностью напоминает его, придавая больше схожести модели.

Звания в ФСБ

В особо сложных условиях

использованная литература

Ноты
Список используемой литературы
  • Боуман, истребитель Martin W. Lockheed F-104 . Рамсбери, Мальборо, Уилтшир, Великобритания: Crowood Press Ltd., 2000. ISBN   1-86126-314-7 .
  • Федеральное управление гражданской авиации , Руководство по механике планера и силовой установки, Руководство по силовой установке Министерство транспорта США, Джеппесен Сандерсон, 1976.
  • Ганстон, Билл . Разработка поршневых авиационных двигателей . Кембридж, Англия. Патрик Стивенс Лимитед, 2006. ISBN   0-7509-4478-1
  • Ганстон, Билл. Разработка реактивных и турбинных авиационных двигателей . Кембридж, Англия. Патрик Стивенс Лимитед, 1997. ISBN   1-85260-586-3
  • Харди, Майкл. Планеры и планеры мира . Лондон: Ян Аллан, 1982. ISBN   0-7110-1152-4 .
  • Боевой самолет Джейн времен Второй мировой войны . Лондон. Studio Editions Ltd, 1998. ISBN   0-517-67964-7
  • Ламсден, Алек. Британские поршневые двигатели и их самолеты . Мальборо, Уилтшир: Эйрлайф Паблишинг, 2003. ISBN   1-85310-294-6 .
  • Руббра, АА . Поршневые двигатели Rolls-Royce — дизайнер вспоминает: Историческая серия № 16 : Rolls-Royce Heritage Trust, 1990. ISBN   1-87292-200-7
  • Стюарт, Стэнли. Полеты на больших самолетах . Шрусбери, Англия. Эйрлайф Паблишинг Лтд., 1986. ISBN   0 906393 69 8
  • Том, Тревор. Пособие воздушного пилота 4-Самолет-Техника . Шрусбери, Шропшир, Англия. Эйрлайф Паблишинг Лтд, 1988. ISBN   1-85310-017-X
  • Уильямс, Нил . Высший пилотаж , Шрусбери, Англия: Эйрлайф Паблишинг Лтд., 1975 ISBN   0 9504543 03

Реактивные двигатели в космосе

Как вы уже поняли, наиболее мощным двигателем, способным поднять ракету на высоту во много тысяч километров, являлся именно реактивный двигатель.

Конечно, возникает вопрос: как может работать реактивный двигатель в космосе, в безвоздушном пространстве?

В устройстве ракеты предусмотрен резервуар с кислородом, который смешивается с ракетным топливом и образует необходимую тягу полета ракеты, когда космический корабль покидает атмосферу Земли.

Затем приходит в действие закон сохранения импульса: масса ракеты постепенно уменьшается, сгоревшая смесь топлива и кислорода выбрасывается через сопло в одну сторону, а тело ракеты движется в противоположную.

Пульсирующие воздушно-реактивные авиа двигатели

Пульсирующие воздушно-реактивные двигатели не нашли применения в современной авиации из-за неудовлетворительной своей эффективности. Главной особенностью их функционирования является то, что работают они на принципе воздушно-реактивного двигателя. С той лишь разницей, что топливо в камеру сгорания подаётся периодически, создавая своеобразные импульсы, позволяющие двигать объект в заданном направлении.

Пульсирующие воздушно-реактивные двигатели эффективны лишь при однократном своём использовании, в последующих же случаях, их использование снижает и саму надёжность и увеличивает затраты.

Принцип работы турбовентиляторного двигателя

Турбовентиляторный двигатель технологически очень сложное изделие, но работающее по довольно простому и понятному принципу. Расскажем, о его устройстве и какие процессы и как в нём протекают. Сначала разберёмся с терминами. Слово турбовентиляторный произошло от английского turbofan, причём англоязычный мир имеет под словом turbofan абсолютно любой двухконтурный турбореактивный двигатель.

При этом они разделяют их с низкой и высокой степенью двухконтурности соответственно, а степень двухконтурности – это параметр, который показывает отношение расхода массы воздуха через внешний контур к расходу во внутреннем. Итак, неотъемлемое свойство турбовентиляторного двигателя высокая степень двухконтурности – для современных изделий от 4 и выше.

Чтобы как можно больше воздуха расходовать через внешний контур используется вентилятор большого диаметра, энергия для его вращения появляется за счёт работы внутреннего контура и в этом заключается суть работы турбовентиляторного двигателя, где с помощью вентилятора создаётся около 80% всей тяги.

Рассмотрим типичное устройство и как это работает. Турбовентиляторный двигатель имеет внешний и внутренний контуры. На входе в двигатель имеется вентилятор большого диаметра, который подаёт воздух в оба контура, устройство внутреннего контура подобно обычному турбореактивному двигателю, который состоит из компрессора, турбины, камеры сгорания и реактивного сопла.

Сначала воздух, немного увеличив давление, после вентилятора попадает в компрессор низкого давления, затем он попадает в компрессор высокого давления, который вращается в несколько раз быстрее. После прохождения обоих компрессоров, воздух, сжатый более чем в 30 раз и сильно нагретый от высокого давления попадает в камеру сгорания. Здесь он смешивается с топливом, которое подаётся с помощью форсунок и поджигается. Далее раскалённый газ с температурой около 1600 градусов и выше начинает совершать полезную работу.

Сначала он попадает в турбину высокого давления, которая заставляет вращаться, находящийся с ней на одном валу компрессор высокого давления. Затем, потратив часть энергии и снизив свою температуру, раскаленный газ попадает в турбину низкого давления, которая находится на одном валу с компрессором и вентилятором. Потеряв большую часть энергии, раскалённый газ попадает в сопло и совершает последнее полезное действие – создаёт реактивную тягу. Таков принцип работы внутреннего контура, который создаёт лишь 20% всей тяги вентиляторного двигателя.

Принцип работы внешнего контура. Турбина низкого давления, находящаяся на одном валу с вентилятором, заставляет его вращаться, воздух, пройдя через лопатки вентилятора и немного увеличив своё давление, проходит через спрямляющий аппарат, его неподвижные лопатки поворачивают поток воздуха в осевом направлении, заодно повышая его давление. Затем воздушный поток попадает в сопло, где создаётся реактивная тяга.

Вот и весь принцип работы вентиляторного двигателя. Разумеется, каждый конкретный двигатель имеет свои особенности и различия, больше всего они касаются устройства внутреннего контура, но схема исполнения всегда остаётся плюс минус одинаковой. Обычно разница заключается в количестве ступеней компрессора и турбины, также помимо двухвальной схемы используется и трёхвальная, когда вентилятор и компрессор низкого давления больше не связаны, в таком случае используется промежуточная турбина, которая вращает только компрессор низкого давления на отдельном валу.

Ещё один способ увеличения эффективности конструкции – это установка редуктора на валу, который соединяет турбину низкого давления и вентилятор, такое решение позволяет им работать на оптимальных для себя режимах. Устройство внешнего контура также может иметь заметные отличия. При относительно небольшой степени двухконтурности в двигателе может использоваться смешение потоков, где газ из обоих контуров попадает в единую камеру сгорания и покидает через общее сопло.

Но, такая схема не подходит для более габаритных двигателей с высокой степенью двухконтурности, так как масса двигателя значительно вырастет, поэтому практически во всех вентиляторных двигателях потоки не смешиваются и длина внешнего контура всегда меньше внутреннего. Вот собственно и всё – таков принцип и способы повышения эффективности работы турбовентиляторного двигателя.

Источник

Газотурбинные авиа двигатели

Принцип работы газотурбинного авиационного двигателя основывается на сжатии и нагреве газа, энергия которого впоследствии преобразуется в механическую работу, заставляя вращаться газовую турбину. Первые двигатели данного класса появились в Германии ещё в начале 40-х годов прошлого века, и на сегодняшний день они по-прежнему продолжают широко применяться в военной авиации, в частности устанавливаются на самолётах Су-27, МиГ-29, F-22, F-35 и т.д.

Газотурбинные авиа двигатели весьма эффективны на сравнительно небольших скоростях перемещения воздушных судов, и потому их применение в гражданской авиации также весьма обоснованно.

5 век

Ссылки

Пульсирующие воздушно-реактивные авиа двигатели

Пульсирующие воздушно-реактивные двигатели не нашли применения в современной авиации из-за неудовлетворительной своей эффективности. Главной особенностью их функционирования является то, что работают они на принципе воздушно-реактивного двигателя. С той лишь разницей, что топливо в камеру сгорания подаётся периодически, создавая своеобразные импульсы, позволяющие двигать объект в заданном направлении.

Пульсирующие воздушно-реактивные двигатели эффективны лишь при однократном своём использовании, в последующих же случаях, их использование снижает и саму надёжность и увеличивает затраты.

Использование двух турбокомпрессоров и других турбо деталей

На некоторые двигатели устанавливается два турбокомпрессора разного размера. Малый турбокомпрессор быстрее набирает обороты, снижая тем самым задержку ускорения, а большой обеспечивает больший наддув при высокой скорости вращения двигателя.

Охладитель воздуха или охладитель наддувочного воздуха является дополнительным устройством, которое выглядит как радиатор, только воздух проходит как внутри, так и снаружи охладителя. 

Охладитель увеличивает мощность двигателя, охлаждая сжатый воздух от компрессора перед его подачей в двигатель. 

Турбокомпрессоры также обладают преимуществом на большой высоте, где плотность воздуха ниже. Обычные двигатели будут работать слабее на большой высоте над уровнем моря, т.к. на каждый ход поршня подаваемая масса воздуха будет меньше. Мощность двигателя с турбокомпрессором также снизится, но менее заметно, т.к. разреженный воздух легче сжимать.

Ульфберт, меч викингов

Турбореактивный двигатель самолета: устройство и принцип работы

Совершая полет в самолете в большинстве случаев люди никогда не задумываются о том, как работает его двигатель. Но на самом деле о работе двигателя и реактивной тяги с помощью, которой работает сам двигатель, знали ее в Античное время. Но применить эти знания на практике смогли не так давно, так как раньше не технологии не позволяли никому достичь его исправной работы. Гонка вооружения между Англией и Германией стала толчком к созданию ТРД (турбореактивного двигателя).

В работе ТРД самолета нет никаких сложностей, принцип его работы может понять почти каждый человек. Но данный двигатель имеет несколько нюансов, их соблюдение контролируется под строгим присмотром руководства. Для того чтобы авиалайнер смог держаться в небе, необходима идеальная работа двигателя. Так как от работы двигателя напрямую зависят жизни пассажиров находящихся на борту авиатранспорта.

Варианты

  • АКС74УН2ночной») — вариант, отличающийся наличием планки для крепления ночного прицела. Для стрельбы в условиях естественной освещенности ночью к нему присоединяется ночной стрелковый прицел универсальный модернизированный (НСПУМ).
  • АКС74УБбесшумный») — вариант для сил специального назначения, отличающийся заменой штатной дульной насадки на резьбу для крепления глушителя (обычно ПБС-4) и возможностью установки бесшумного подствольного гранатомета БС-1М. В таком виде автомат образовывает бесшумный стрелково-гранатометный комплекс 6С1 «Канарейка».

В поздних версиях АКС74У на левой стороне ствольной коробки появилась боковая планка системы «ласточкин хвост» для крепления прицелов типа «Кобра» и ПСО/ПОСП.

Поршневые двигатели (ПД)

Двухрядный звездообразный 14-ти цилиндровый поршневой двигатель с воздушным охлаждением. Общий вид.

Поршневой двигатель

(англ. Piston engine

) —

Классификация поршневых двигателей.

Авиационные поршневые двигатели могут быть классифицированы по различным признакам:

  • В зависимости от рода применяемого топлива
    — на двигатели легкого или тяжелого топлива.
  • По способу смесеобразования
    — на двигатели с внешним смесеобразованием (карбюраторные) и двигатели с внутренним смесеобразованием (непосредственный впрыск топлива в цилиндры).
  • В зависимости от способа воспламенения смеси
    — на двигатели с принудительным зажиганием и двигатели с воспламенением от сжатия.
  • В зависимости от числа тактов
    — на двигатели двухтактные и четырехтактные.
  • В зависимости от способа охлаждения
    — на двигатели жидкостного и воздушного охлаждения.
  • По числу цилиндров
    — на двигатели четырехцилиндровые, пятицилиндровые, двенадцатицилиндровые и т.д.
  • В зависимости от расположения цилиндров
    — на рядные (с расположением цилиндров в ряд) и звездообразные (с расположением цилиндров по окружности).

Рядные двигатели в свою очередь подразделяются на однорядные, двухрядные V-образные, трехрядные W-образные, четырехрядные Н-образные или Х-образные двигатели.
Звездообразные двигатели также подразделяются на однорядные, двухрядные и многорядные.

  • По характеру изменения мощности в зависимости от изменения высоты
    — на высотные, т.е. двигатели, сохраняющие мощность с подъемом самолета на высоту, и невысотные двигатели, мощность которых падает с увеличением высоты полета.
  • По способу привода воздушного винта
    — на двигатели с прямой передачей на винт и редукторные двигатели.

Современные авиационные поршневые двигатели представляют собой звездообразные четырехтактные двигатели, работающие на бензине. Охлаждение цилиндров поршневых двигателей выполняется, как правило, воздушным. Ранее в авиации находили применение поршневые двигатели и с водяным охлаждением цилиндров.

Сгорание топлива в поршневом двигателе осуществляется в цилиндрах, при этом тепловая энергия преобразуется в механическую, так как под действием давления образующихся газов происходит поступательное движение поршня. Поступательное движение поршня в свою очередь преобразуется во вращательное движение коленчатого вала двигателя через шатун, являющийся связующим звеном между цилиндром с поршнем и коленчатым валом.

Атомные авиа двигатели

Первые атомные авиа двигатели начали появляться в середине минувшего века, когда начались мирные исследования атома. Основным принципом работы атомного авиационного двигателя является осуществление контролируемой цепной ядерной реакции, что позволяло выдавать огромную мощность, при сравнительно небольшом уровне затрат.

Атомные авиа двигатели практически одновременно появились и в США и в СССР, однако сама идея того, что самолёт, пусть и с весьма компактным атомным реактором на своём борту может упасть и это впоследствии приведёт к катастрофе, заставила отказаться от этой идеи.

В США атомный авиационный двигатель применялся на самолёте Convair NB-36H, а в СССР на самолётах Ту-95 и Ан-22.

Варианты[править | править код]

РМО-93 «Рысь» (ружьё магазинное охотничье 93 года) — гражданский вариант РМБ-93. Выпускается в следующих модификациях:

  • Рысь-Ф — вариант длиной 809 мм со стволом 680 мм со складным вверх и вперёд прикладом (как в РМБ-93).
  • Рысь-К — вариант со складным вверх и вперёд прикладом и укороченным до 528 мм стволом (в данном варианте РМО-93 аналогично РМБ-93, но имеет автоблокировку курка при сложенном прикладе).
  • Рысь-Л — вариант длиной 928 мм и стволом 528 мм с деревянным нескладным прикладом.
  • Рысь-У — вариант длиной 918 мм и стволом 528 мм с деревянным нескладным прикладом, имеющим отверстие для большого пальца.
  • Рысь-О — вариант длиной 1080 мм и стволом 680 мм с деревянным нескладным прикладом.

Зачем самолёту вспомогательная силовая установка

APU имеет несколько функций, связанных с безопасностью, удобством и экономичностью.

Обеспечение питания на земле

Первое и самое простое использование APU — обеспечение питания на земле . Его можно запускать как при остановленных двигателях, так и при посадке пассажиров на борт (до запуска основных двигателей). ВСУ будет обеспечивать электроэнергией системы кабины пилотов и салона. Он также будет создавать пневматическое давление для работы кондиционеров (подающих воздух пассажирам) в авиалайнере, а клиентам авиакомпании не придется пробираться к своим местам в кромешной темноте.

Теоретически, эти же функции могут выполнять и основные двигатели. Вот только затраты авиакомпании на керосин значительно возрастут. Да и износ маршевых силовых установок будет гораздо выше.

Можно было бы использовать и внешние источники питания , например, подгонять к самолётам специальный обслуживающий автомобиль, изображенный на картинке ниже. Однако это увеличило бы время посадки пассажиров в самолёт (пока подгонишь, пока подключишь, пока отключишь), а время, проведенное в аэропорту, авиакомпаниям влетает в копеечку.

По этим причинам производители самолётов посчитали целесообразным добавить ещё один двигатель с меньшим потреблением, который будет работать на земле.

Кроме того, самолётам с ВСУ не требуется специальное оборудование в аэропортах. Так, «Конкорд» мог эксплуатироваться только в воздушных гаванях, в которых есть наземные источники питания . А это значительно сокращает географию полётов. А Боинг 727, где ВСУ были установлены рядом с шасси, могли приземляться в совершенно разных аэропортах и не зависели от оборудования аэропортов.

Запуск основных двигателей

Вторая функция APU — запуск маршевых двигателей. Как и в предыдущем случае, эту проблему решил бы наземный источник питания, но это долго и дорого.

Прежде чем запустить основной двигатель, самолёту необходимо привести в движение лопасти. Это достигается за счет стравливания воздуха (по сути выхлопа под высоким давлением) из турбины ВСУ. Создается воздушный поток, достаточный для вращения лопастей главного двигателя. А затем, топливно-воздушная смесь воспламеняется, а двигатель — запускается.

Если двигатель запускается без воздушного потока, он может выйти из строя из-за перегрева.

Затем нарастает давление для дальнейшего раскрутки двигателя, и, когда он достигает оборотов холостого хода, питание от ВСУ прекращается.

Остальные двигатели запускаются, либо по такому же принципу, используя ВСУ, либо воздух высокого давления от уже запущенного двигателя. Это называется « перекрестным сливом » и также используется для повторного запуска вышедшего из строя двигателя.

Безопасность во время полёта

В единичных случаях APU используют в полёте при отказе одного из основных двигателей. его можно использовать и для подачи электроэнергии, и для стравливания воздуха при повторном запуске двигателей.

Принцип действия и устройство турбин. Активные и реактивные принципы работы турбин

Особенности турбины как теплового двигателя

Турбина является тепловым ротационным двигателем, в котором потенциальная тепловая энергия пара (или газа) превращается в кинетическую, а последняя в свою очередь преобразуется в механическую работу вращения вала.

Пар с давлением более высоким, чем за турбиной, поступает в одно или несколько неподвижных каналов 5. В сопловых каналах пар расширяется, давление его падает, а скорость возрастает.

Из сопл пар поступает в рабочие каналы, образованные рабочими лопатками 3, закрепленными на диске 2. Двигаясь в рабочих каналах между рабочими лопатками и изменяя свое направление, поток пара оказывает силовое воздействие на рабочие лопатки. В результате чего они вращаются вместе с диском и валом 1, установленным в опорных подшипниках 4.

Комплект, состоящий из сопл и рабочих лопаток, в которых совершается процесс расширения пара, называется ступенью давления турбины. Простейшие турбины, имеющие лишь одну ступень, называются одноступенчатыми, в отличие от более сложных многоступенчатых турбин.

Тремя основными элементами, содержащимися в конструкции турбокомпрессора являются: центробежный компрессор, турбина и центральный корпус. Кинетическая энергия отработанных газов под воздействием турбины преобразуется во вращательное движение компрессора.

Также турбина соединяет турбинное колесо, помещённое в специальный корпус в форме улитки.

Поступая в улитку, отработавшие газы перемещаются по каналу и попадают на лопасти турбинного колеса. Вал, к которому приварено турбинное колесо, передаёт на колесо компрессора энергию, которая придаёт его вращению.

Лопасти турбинного колеса становятся проводниками отработавших газов, которые затем покидают турбину через отверстие в центре турбокомпрессора и выходят в выпускную систему.

От формы и размера турбины напрямую зависит производительность турбокомпрессора. Значительный прирост мощности наблюдается в турбинах большего размера, потому что они могут использовать большее давление отработавших газов. Однако в таких турбокомпрессорах, на низких оборотах, значительна вероятность возникновения турбоямы.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector