Антивещество

Последние достижения и физические препятствия

Исследования, проведенные в 2008 году, резко увеличили количество позитронов (антиэлектронов), которые могут быть произведены. Физики из Ливерморской национальной лаборатории им. Лоуренса в Калифорнии использовали короткий сверхинтенсивный лазерный импульс для облучения золотой мишени миллиметровой толщины, которая произвела более 100 миллиардов позитронов.

Даже если бы можно было преобразовывать энергию непосредственно в пары частица / античастица без каких-либо потерь, крупномасштабной электростанции, генерирующей 2000  МВтэ , потребовалось бы 25 часов, чтобы произвести всего один грамм антивещества. Учитывая, что средняя цена на электроэнергию составляет около 50 долларов США за мегаватт-час, это устанавливает нижний предел стоимости антивещества на уровне 2,5 миллиона долларов за грамм. Это сделало бы антивещество очень рентабельным в качестве ракетного топлива, поскольку всего одного миллиграмма было бы достаточно, чтобы отправить зонд к Плутону и обратно в течение года, а это задание было бы совершенно недоступно с обычным топливом. Однако большинство ученых сомневаются в возможности достижения такой эффективности.

Вторая проблема — это удержание антивещества. Аннигилирует с обычным веществом при контакте, поэтому было бы необходимо предотвратить контакт, например, создав антивещество в виде твердых заряженных или намагниченных частиц, и приостановив их с помощью электромагнитных полей , таких как магнитная бутылка в почти идеальном пустом вакууме. . Очевидное решение — удерживать заряженный объект внутри одинаково заряженного контейнера — невозможно, поскольку электрическое поле внутри однородно. По этой причине необходимо иметь заряженные объекты, движущиеся относительно контейнера, которые могут быть ограничены в центральной области магнитными полями; например, в виде тороида или ловушки Пеннинга (см. ниже).

Для достижения компактности с учетом макроскопического веса общий электрический заряд ядра оружия на антивеществе должен быть очень мал по сравнению с количеством частиц. Например, невозможно создать оружие с использованием одних позитронов из-за их взаимного отталкивания. Ядро оружия на антивеществе должно состоять в основном из нейтральных античастиц. В лабораториях были произведены чрезвычайно малые количества антиводорода , но удержать их (путем охлаждения до температуры в несколько милликельвинов и захвата их ловушкой Пеннинга ) чрезвычайно сложно. И даже если бы эти предложенные эксперименты были успешными, они бы улавливали только несколько атомов антиводорода для исследовательских целей, что слишком мало для оружия или двигателей космических кораблей. Создано также антивещество Гелий-4.

Сложность предотвращения случайного взрыва оружия на антивеществе можно сравнить с трудностью ядерного оружия. В то время как ядерное оружие является « отказоустойчивым », оружие на антивеществе по своей сути « отказоустойчиво »: в оружии на антивеществе любой отказ сдерживания немедленно приведет к аннигиляции, что повредит или разрушит систему сдерживания и приведет к высвобождению всего. материала антивещества, в результате чего оружие взорвалось с полной отдачей. В отличие от этого, современное ядерное оружие взорвется со значительной мощностью, если (и только если) ядерный спусковой механизм сработает с абсолютной точностью, что приведет к тому, что нейтронный источник полностью освободится мгновенно (<микросекунд). Короче говоря, оружие на антивеществе необходимо активно предохранять от детонации; в то время как ядерное оружие не будет, если оно не будет сделано специально.

Существующие и перспективные способы применения

В настоящее время антивещество используется в медицине, при проведении позитронно-эмиссионной томографии. Этот метод позволяет получить изображение внутренних органов человека в высоком разрешении. Радиоактивные изотопы наподобие калия-40 соединяют с органическими веществами типа глюкозы и вводят в кровеносную систему пациента. Там они испускают позитроны, которые аннигилируются при встрече с электронами нашего тела. Гамма-излучение, полученное в ходе этого процесса, формирует изображение исследуемого органа или ткани.

Антивещество также изучается в качестве возможного средства против онкологических заболеваний.

Применение антиматерии, несомненно, имеет огромные перспективы. Она сможет привести к настоящему перевороту в энергетике и позволит людям достичь звезд. Любимым коньком авторов фантастических романов являются звездолеты с так называемыми варп-двигателями, позволяющими перемещаться со сверхсветовой скоростью. Сегодня существует несколько математических моделей подобных установок, и большинство из них используют в работе антивещество.

Есть и более реалистичные предложения без сверхсветовых полетов и гиперпространства. Например, предлагается вбрасывать в облако антипротонов капсулу из урана-238 с находящимся внутри дейтерием и гелием-3. Разработчики проекта считают, что взаимодействие данных составляющих приведет к началу термоядерной реакции, продукты которой, будучи направленными магнитным полем в сопло двигателя, обеспечат кораблю значительную тягу.

Учитывая значительное количество энергии, выделяемой при аннигиляции антивещества, эта субстанция – прекрасный кандидат для начинки бомб и других взрывоопасных предметов. Даже небольшого количества антивещества достаточно для создания боеприпаса, сопоставимого по мощности с ядерной бомбой. Но пока об этом преждевременно беспокоиться, ибо данная технология находится на самом раннем этапе своего развития. Вряд ли подобные проекты смогут осуществиться в ближайшие десятилетия.

Пока же антивещество – в первую очередь, предмет изучения теоретической науки, который очень много может рассказать об устройстве нашего мира. Подобное положение вещей вряд ли изменится пока мы не научимся получать его в промышленных масштабах и надежно сберегать. Только тогда можно будет говорить о практическом использовании этой субстанции.

Автор статьи:
Егоров Дмитрий

Увлекаюсь военной историей, боевой техникой, оружием и другими вопросами, связанными с армией. Люблю печатное слово во всех его формах.

Как светит солнце?

Древние мыслители думали, что поверхность солнца постоянно горит, и поэтому излучает свет и тепло. Однако это не так. Во-первых, причина излучения тепла и света находится намного глубже поверхности звезды, а именно в ядре. Ну и во-вторых, процессы происходящие в недрах звезд вовсе не похожи на горение.

Солнце содержит огромное количество атомов водорода.

Суть термоядерной реакции

Как правило, нейтральный атом водорода содержит положительно заряженный протон и отрицательно заряженный электрон, который вращается вокруг него. Когда этот атом встречается с другим атомом водорода, их соответствующие внешние электроны магнитно отталкивают друг друга, что предотвращает встречу одного из протонов друг с другом.

Но ядро Солнца сильно разогрето и находится под таким давлением, что атомы перемещаются с большой кинетической энергией, которая позволяет им преодолевать силу, связывающую их структуру, и электроны начинают отделяться от своих протонов.

Это означает, что протоны, обычно находящиеся внутри ядра атома водорода, могут касаться друг друга и объединяются в ядра других элементов.

То есть с научной точки зрения, — это реакция, при которой более легкие атомные ядра — обычно изотопы водорода (дейтерий и тритий) сливаются в более тяжелые ядра — гелия.

Данный процесс, происходящий в недрах звезд, называется термоядерный синтез.


Термоядерная реакция

Это процесс перехода материи в энергию, причем из минимального количества материи высвобождается невероятное количество энергии — каждую секунду Солнце излучает 3,828⋅1026 Вт мощности.

Чтобы произошла термоядерная реакция необходима невероятно высокая температура — несколько миллионов градусов.

Как можно было догадаться солнце не вечно, оно со временем «спалит само себя». Ученые считают, что в нем еще хватит материи приблизительно на 4-6 миллиардов лет, т.е. где-то на столько же, сколько оно уже просуществовало.

Физики – теоретики античастиц

Антивещество впервые было предсказано в 1928 году английским физиком Поль Дираком, которого английские ученые назвали “величайшим теоретиком Британии, как сэр Исаак Ньютон».

Дирак собрал специальное уравнение относительности Эйнштейна (в котором говорится, что свет имеет определенную скорость во Вселенной) и квантовую механику (которая описывает то, что происходит в атоме). Он вывел уравнение для электронов с отрицательным и с положительным зарядом. Дирак в конце концов сказал, что каждая частица во Вселенной будет иметь зеркальное отображение. Американский физик Карл Д. Андерсон обнаружил позитроны в 1932 г.

Дирак получил Нобелевскую премию по физике в 1933 году, а Андерсон получил премию в 1936 году.

Антивещество на космическом корабле

Когда частицы антивещества взаимодействуют с частицами вещества, они уничтожают друг друга и производят энергию.

Это дало повод инженерам предположить, что антивещество может быть колоссальной и эффективной энергией для космического корабля, чтобы исследовать Вселенную.

Однако, по состоянию на сейчас антиматерия стоит около $ 100 млрд, чтобы создать миллиграмм антивещества. Это тот минимум, который будет необходим для применения. Для того, чтобы эта энергия была коммерчески жизнеспособной, эта цена должна была бы упасть примерно в 10000 раз. Сейчас электроэнергии необходимо гораздо больше, чтобы создать антиматерию, чем получить обратно от реакции антивещества.

Но это не останавливает ученых от работ по совершенствованию технологии, чтобы сделать возможным применение антиматерии в космических аппаратах. Ученые утверждают, что вполне возможно, что антивещество можно было бы использовать через 50-70 лет в будущем.

Сейчас прорабатываются варианты как космический аппарат может работать на этом топливе.

Конструкция предусматривает гранулы дейтерия и трития (тяжелые изотопы водорода с одним или двумя нейтронами в ядрах, в отличие от общего водорода, который не имеет нейтронов). Антипротонный луч будет воздействовать на гранулы. После того, как антипротоны достигнут урана, они будут уничтожены с созданием продуктов деления, которые были бы искрой реакции термоядерного синтеза. Использование этой энергии может заставить космический аппарат двигаться.

Ракетные двигатели на антиматерии гипотетически возможны, но основное ограничение это сбор достаточного количества антивещества, чтобы это произошло. Самые дорогие вещества в мире сейчас – это антиматерия.

В настоящее время нет технологии для массового производства или сбора антиматерии в объеме, необходимой для всех приложений.

Описание и назначение

Действующим Корабельным уставом ВМФ Российской Федерации установлено:

Глава 15:

Где все антивещество?

Почему Вселенная, которую мы видим, состоит целиком из материи, это одна из величайших загадок современной физики. Если когда-то было равное количество антивещества, все во Вселенной аннигилировало бы. И вот, недавно опубликованное исследование, похоже нашло новый источник асимметрии между материей и антиматерии.

Об антиматерии первым заговорил Артур Шустер в 1896 году, затем в 1928 году Поль Дирак привел ей теоретическое обоснование, а в 1932 году Карл Андерсон обнаружил ее в форме антиэлектронов, которые получили название позитронов. Позитроны рождаются в естественных радиоактивных процессах, например, распада калия-40. Это означает, что обычный банан (содержащий калий) испускает позитрон каждые 75 минут. Затем он аннигилирует с электронами в материи, производя свет. Медицинские приложения вроде сканеров PET также производят антиматерию в аналогичном процессе.

Основными строительными блоками вещества, из которого состоят атомы, являются элементарные частиц — кварки и лептоны. Существует шесть видов кварков: верхний, нижний, странный, очарованный, истинный и красивый. Точно так же, существует шесть лептонов: электрон, мюон, тау и три вида нейтрино. Есть также антиматериальные копии этих двенадцати частиц, которые отличаются только своим зарядом.

Частицы антивещества в принципе должны быть идеальным зеркальным отражением своих обычных спутников. Но эксперименты показывают, что это не всегда так. Возьмем, к примеру, частицы, известные как мезоны, которые состоят из одного кварка и одного антикварка. Нейтральные мезоны имеют удивительную особенность: они могут самопроизвольно превращаться в свой анти-мезон и наоборот. В этом процессе кварк превращается в антикварк или антикварк превращается в кварк. Однако эксперименты показали, что это может происходить чаще в одном направлении, чем в другом — в результате чего материи становится больше со временем, чем антиматерии.

Антиматерия в условиях космоса

Первооткрыватель позитрона Поль Дирак считал, что во Вселенной существуют целые области, полностью состоящие из антивещества. Об этом он говорил в своей нобелевской лекции. Но пока ученым не удалось обнаружить ничего подобного.

Конечно, в космосе присутствуют античастицы. Они появляются на свет благодаря многим высокоэнергетическим процессам: взрывам сверхновых звезд или горению термоядерного топлива, возникают в облаках плазмы вокруг черных дыр или нейтронных звезд, рождаются при столкновениях высокоэнергетических частиц в межзвездном пространстве. Более того, небольшое количество античастиц постоянно «проливается» дождем на нашу планету. Распад некоторых радионуклидов также сопровождается образованием позитронов. Но все вышеперечисленное – это только античастицы, но не антивещество. До сих пор исследователям не удалось отыскать в космосе даже антигелий, что уж говорить о более тяжелых элементах. Провалом завершились и поиски специфического гамма-излучения, которое сопровождает процесс аннигиляции при столкновении вещества и антивещества.

Судя по имеющимся на сегодня данным, не существует антигалактик, антизвезд или других крупных объектов из антивещества. И это весьма странно: согласно теории Большого взрыва, в момент зарождения нашей Вселенной появилось одинаковое количество вещества и антивещества, и куда делось последнее – непонятно. В настоящее время есть два объяснения этого феномена: либо антивещество исчезло сразу после взрыва, либо оно существует в каких-то отдаленных частях мироздания, и мы его просто его еще не обнаружили. Подобная асимметрия – одна из самых важных неразгаданных задач современной физики.

Существует гипотеза, что на ранних этапах жизни нашей Вселенной количество вещества и антивещества почти совпадало: на каждые миллиард антипротонов и позитронов приходилось ровно столько же их «визави», плюс один «лишний» протон и электрон. Со временем основная часть материи и антиматерии исчезла в процессе аннигиляции, а из избытка возникло все, что нас сегодня окружает. Правда, не совсем понятно, откуда и почему появились «лишние» частицы.

Как получить антиматерю?

Рождение античастиц обычно происходит при образовании пар частица-античастица. В лабораторных условиях этого добиваются на ускорителях или в экспериментах с лазерами. В природных условиях – в пульсарах и около чёрных дыр, а также при взаимодействии космических лучей с некоторыми видами вещества. Выше мы говорили, что антивещество не образуется в природе – так оно и есть. Антивещество должно состоять из античастиц, но они не объединяются в него, то есть мы не видим, например, антизвёзд или антипланет.

Для примера возьмём атом водорода, который является простейшим веществом, состоящим из одного протона, определяющего ядро, и электрона, который вращается вокруг него. Так вот антиводород – это антивещество, атом которого состоит из антипротона и вращающегося вокруг него позитрона.

Звучит довольно просто, вот только синтезировать антиводород – крайне сложная задача. Впервые целых 9 атомов такого антивещества физикам удалось создать в 1995-м году на ускорителе LEAR в ЦЕРНе. Правда просуществовали они до распада всего 40 наносекунд.

Работа продолжалась и специалистами была придумана и создана магнитная ловушка, которая удержала 38 атомов антиводорода в течение 172 миллисекунд (0,172 секунды), а после 170 000 атомов антиводорода, что по массе около 10^-18 грамм. Это самый настоящий успех.

Цена антиматерии — стоимость создания антивещества

Согласно расчётам NASA, создание одного миллиграмма позитронов будет стоить около $25 миллионов, а 1 г антиводорода оценивается в $62,5 триллиона.

За 10 лет в экспериментах ЦЕРНа использован один нанограмм антивещества и его стоимость оценивается в несколько сотен миллионов долларов. Не стоит пугаться таким суммам, ведь, например, компьютер в семидесятые годы прошлого столетия, когда запускали «Вояджеры», эквивалентный по мощности современному мобильнику, стоил несколько десятков миллионов долларов.

Все антипротоны, созданные на ускорителе частиц Тэватроне в Лаборатории Ферми, едва ли наберут 15 нанограммов. В CERN на сегодняшний день произвели только порядка 1 нанограмма. В DESY в Германии — не больше 2 нанограммов позитронов.

Если вся антиматерия, созданная людьми, аннигилирует мгновенно, ее энергии не хватит даже на то, чтобы вскипятить чашку чая.

Проблема заключается в эффективности и стоимости производства и хранения антивещества. Создание 1 грамма антиматерии требует порядка 25 миллионов миллиардов киловатт-часов энергии и стоит выше миллиона миллиарда долларов. Неудивительно, что антивещество иногда включают в список десяти самых дорогих веществ в нашем мире.

Антиматерия рядом с нами

Небольшие количества антиматерии постоянно проливаются дождем на Землю в виде космических лучей, энергетических частиц из космоса. Эти частицы антивещества достигают нашей атмосферы с уровнем от одной до более сотни на квадратный метр. Ученые также располагают свидительствами того, что антивещество рождается во время грозы.

Есть и другие источники антивещества, которые находятся ближе к нам. Бананы, например, вырабатывают антивещество, испуская один позитрон — антивещественный экивалент электрона — примерно раз в 75 минут. Это происходит потому, что бананы содержат небольшое количество калия-40, встречающегося в природе изотопа калия. При распаде калия-40 иногда рождается позитрон.

Наши тела тоже содержат калий-40, а значит, и вы излучаете позитроны. Антиматерия аннигилирует мгновенно при контакте с материей, поэтому эти частицы антивещества живут не очень долго.

Есть ли во Вселенной объекты, состоящие из антиматерии?

Если и есть, то очень мало. Убедительных доказательств существования больших объектов, состоящих из антиматерии, нет.

Фантасты рассматривают аннигиляцию как идеальный способ получения энергии. Сейчас на получение антиматерии уходит намного больше энергии, чем потом дает аннигиляция.

Есть проекты фотонных двигателей, можно представить электростанции, но это все пока из области фантастики. Принципиально все понятно, а реализовать на практике ученым пока не удалось.

Античастицы

Центр атома называется ядро в котором находятся протоны (которые имеют положительный электрический заряд) и нейтроны (которые имеют нейтральный заряд). Электроны, которые обычно имеют отрицательный заряд, занимают орбиты вокруг ядра. Орбиты могут изменяться в зависимости от того, как “возбуждаются” электроны (то есть, сколько энергии у них есть).

В случае с антивеществом, электрический заряд восстанавливается по отношению к материи. Анти-электроны (так называемые позитроны) ведут себя подобно электронам, но имеют положительный заряд. Антипротоны, как следует из названия, представляют собой протоны с отрицательным зарядом.

Эти частицы антиматерии (которые называются «античастицы») были получены и изучены на огромных ускорителях элементарных частиц, таких как Большой адронный коллайдер управляемый Европейской организацией ядерных исследований.

В циркулярном ускорителе на встречных пучках как большой адронный коллайдер частицы получают удар энергии каждый раз, когда они завершают вращение.

Для изучения антивещества, необходимо предотвратить его аннулирование с материей. Ученые создали специальные ловушки. Частицы как позитроны и антипротоны загоняются в устройства, называемые ловушкой Пеннинга. Устройство похоже на крошечные ускорители. Внутри устройства находятся спирали создающие магнитные и электрические поля которые удерживают частицы от их столкновения со стенками ловушки.

Но ловушки Пеннинга не будут работать для нейтральных частиц, таких как антиводород, потому что у него нет заряда. Ученые придумали другие ловушки, которые работают путем создания области пространства, где магнитное поле излучается во всех направлениях.

Антивещество не подчинено антигравитации. Несмотря на то, что не было подтверждено экспериментально, существующая теория предсказывает, что антиматерия ведет себя так же, как при гравитации делает нормальная материя.

Базы и места дислокации ВМФ России

В состав ВМФ России входят четыре флота, одна флотилия и одна зарубежная база. Фактически базы флотов расположены по всей береговой территории Российской Федерации и готовы к защите берегов России.

Северный флот

Штаб Северного флота расположен в городе Североморск.

Пункты базирования флота:

  • Североморск;
  • Гремиха;
  • Гаджиево;
  • Видяево;
  • Западная Лица (Заозёрск);
  • Полярный;
  • Оленья Губа.

Военно-морские базы Северного флота (ВМБ):

Беломорская военно-морская база г. Северодвинск.

Тихоокеанский флот

Штаб Тихоокеанского флота расположен в городе Владивосток.

Пункты базирования флота:

  • Владивосток;
  • Фокино;
  • Дунай;
  • Советская Гавань;
  • Вилючинск — Камчатский край.

Черноморский флот

Штаб Черноморского флота расположен в городе Севастополь.

Пункты базирования флота:

  • Севастополь;
  • Новороссийск.

Военно-морские базы (ВМБ):

  • Новороссийская военно-морская база;
  • Крымская военно-морская база.

Для выполнения поставленных задач Черноморский флот имеет в своем составе дизельные подводные лодки, надводные корабли для действий в океанской и ближней морской зонах, морскую ракетоносную, противолодочную и истребительную авиацию, части береговых войск.

Балтийский флот

Штаб Балтийского флота расположен в городе Калининград.

Пункты базирования флота:

  • Балтийск (Калининградская область);
  • Кронштадт (Санкт-Петербург).

Военно-морские базы (ВМБ):

  • Балтийская военно-морская база;
  • Ленинградская военно-морская база.

Каспийская флотилия

Штаб Каспийской флотилии расположен в городе Астрахань.

Пункты базирования флотилии:

  • Астрахань;
  • Махачкала;
  • Каспийск.

Зарубежные

В настоящий момент Россия располагает одним военно-морским пунктом за рубежом:

720-й пункт материально-технического обеспечения ВМФ России (ПМТО) в г. Тартус (Сирия) на Средиземном море.

Есть ли антиматерия в космосе?

Когда Поль Дирак вывел из своей теории существование позитронов, он вполне допускал, что где-то в космосе могут существовать настоящие антимиры. Сейчас мы знаем, что звезд, планет, галактик из антивещества в видимой части Вселенной нет. Дело даже не в том дело, что не видно аннигиляционных взрывов; просто совершенно невообразимо, как они вообще могли бы образоваться и дожить до настоящего времени в постоянно эволюционирующей вселенной.

Но вот вопрос «как так получилось» — это еще одна большущая загадка современной физики; на научном языке она называется проблемой бариогенеза. Согласно космологической картине мира, в самой ранней вселенной частиц и античастиц было поровну.

Затем, в силу нарушения CP-симметрии и барионного числа, в динамично развивающейся вселенной должен был появиться небольшой, на уровне одной миллиардной, избыток материи над антиматерией.

При остывании вселенной все античастицы проаннингилировали с частицами, выжил лишь этот избыток вещества, который и породил ту вселенную, которую мы наблюдаем. Именно из-за него в ней осталось хоть что-то интересное, именно благодаря нему мы вообще существуем. Как именно возникла эта асимметрия — неизвестно.

Теорий существует много, но какая из них верна — неизвестно. Ясно лишь, что это точно должна быть какая-то Новая физика, теория, выходящая за пределы Стандартной модели, за границы экспериментально проверенного.

Три варианта того, откуда могут взяться античастицы в космических лучах высокой энергии:

  • 1 — они могут просто возникать и разгоняться в «космическом ускорителе», например в пульсаре;
  • 2 — они могут рождаться при столкновениях обычных космических лучей с атомами межзвездной среды;
  • 3 — они могут возникать при распаде тяжелых частиц темной материи.

Хоть планет и звезд из антивещества нет, антиматерия в космосе все же присутствует. Потоки позитронов и антипротонов разных энергий регистрируются спутниковыми обсерваториями космических лучей, такими как PAMELA, Fermi, AMS-02. Тот факт, что позитроны и антипротоны прилетают к нам из космоса, означает, что они где-то там рождаются.

Высокоэнергетические процессы, которые могут их породить, в принципе известны: это сильно замагниченные окрестности нейтронных звезд, разные взрывы, ускорение космических лучей на фронтах ударных волн в межзвездной среде, и т.п. Вопрос в том, могут ли они объяснить все наблюдаемые свойства потока космических античастиц. Если окажется, что нет, это будет свидетельством в пользу того, что некоторая их доля возникает при распаде или аннигиляции частиц темной материи.

Здесь тоже есть своя загадка. В 2008 году обсерватория PAMELA обнаружила подозрительно большое количество позитронов больших энергий по сравнению с тем, что предсказывало теоретическое моделирование. Этот результаты был надавно подтвержден установкой AMS-02 — одним из модулей Международной Космической Станции и вообще самым крупным детектором элементарных частиц, запущенным в космос (и собранным догадайтесь где? — правильно, в ЦЕРНе).

Этот избыток позитронов будоражит ум теоретиков — ведь ответственным за него могут оказаться не «скучные» астрофизические объекты, а тяжелые частицы темной материи, которые распадаются или аннигилируют в электроны и позитроны. Ясности тут пока нет, но установка AMS-02, а также многие критически настроенные физики, очень тщательно изучают это явление.

Отношение антипротонов к протонам в космических лучах разной энергии. Точки — экспериментальные данные, разноцветные кривые — астрофизические ожидания с разнообразными погрешностями.

С антипротонами тоже ситуация неясная. В апреле этого года AMS-02 на специальной научной конференции представил предварительные результаты нового цикла исследований. Главной изюминкой доклада стало утверждение, что AMS-02 видит слишком много антипротонов высокой энергии — и это тоже может быть намеком на распады частиц темной материи. Впрочем, другие физики с таким бодрым выводом не согласны.

Сейчас считается, что антипротонные данные AMS-02, с некоторой натяжкой, могут быть объяснены и обычными астрофизическими источниками. Так или иначе, все с нетерпением ждут новых позитронных и антипротонных данных AMS-02.

AMS-02 зарегистрировала уже миллионы позитронов и четверть миллиона антипротонов. Но у создателей этой установки есть светлая мечта — поймать хоть одно антиядро. Вот это будет настоящая сенсация — совершенно невероятно, чтобы антиядра родились где-то в космосе и долетели бы до нас. Пока что ни одного такого случая не обнаружено, но набор данных продолжается, и кто знает, какие сюрпризы готовит нам природа.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector